A genetic particle filter scheme for univariate snow cover assimilation into Noah-MP model across snow climates

Author:

You Yuanhong,Huang Chunlin,Wang Zuo,Hou Jinliang,Zhang Ying,Xu Peipei

Abstract

Abstract. Accurate snowpack simulations are critical for regional hydrological predictions, snow avalanche prevention, water resource management, and agricultural production, particularly during the snow ablation period. Data assimilation methodologies are increasingly being applied for operational purposes to reduce the uncertainty in snowpack simulations and to enhance their predictive capabilities. This study aims to investigate the feasibility of using a genetic particle filter (GPF) as a snow data assimilation scheme designed to assimilate ground-based snow depth (SD) measurements across different snow climates. We employed the default parameterization scheme combination within the Noah-MP (with multi-parameterization) model as the model operator in the snow data assimilation system to evolve snow variables and evaluated the assimilation performance of the GPF using observational data from sites with different snow climates. We also explored the impact of measurement frequency and particle number on the filter updating of the snowpack state at different sites and the results of generic resampling methods compared to the genetic algorithm used in the resampling process. Our results demonstrate that a GPF can be used as a snow data assimilation scheme to assimilate ground-based measurements and obtain satisfactory assimilation performance across different snow climates. We found that particle number is not crucial for the filter's performance, and 100 particles are sufficient to represent the high dimensionality of the point-scale system. The frequency of measurements can significantly affect the filter-updating performance, and dense ground-based snow observational data always dominate the accuracy of assimilation results. Compared to generic resampling methods, the genetic algorithm used to resample particles can significantly enhance the diversity of particles and prevent particle degeneration and impoverishment. Finally, we concluded that the GPF is a suitable candidate approach for snow data assimilation and is appropriate for different snow climates.

Funder

National Natural Science Foundation of China

Key Technologies Research and Development Program of Anhui Province

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3