Assessing the Sensitivity of Snow Depth Simulations to Land Surface Parameterizations within Noah-MP in Northern Xinjiang, China

Author:

You Yuanhong1ORCID,Huang Chunlin2ORCID,Zhang Yuhao1ORCID

Affiliation:

1. School of Geography and Tourism, Anhui Normal University, Wuhu 241002, China

2. Key Laboratory of Remote Sensing of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China

Abstract

Snow cover plays a crucial role in the surface energy balance and hydrology and serves as a key indicator of climate change. In this study, we conducted an ensemble simulation comprising 48 members generated by randomly combining the parameterizations of five physical processes within the Noah-MP model. Utilizing the variance-based Sobol total sensitivity index, we quantified the sensitivity of regional-scale snow depth simulations to parameterization schemes. Additionally, we analyzed the spatial patterns of the parameterization sensitivities and assessed the uncertainty of the multi-parameterization scheme ensemble simulation. The results demonstrated that the differences in snow depth simulation results among the 48 scheme combinations were more pronounced in mountain regions, with melting mechanisms being the primary factor contributing to uncertainty in ensemble simulation. Contrasting mountain regions, the sensitivity index for the physical process of partitioning precipitation into rainfall and snowfall was notably higher in basin areas. Unexpectedly, the sensitivity index of the lower boundary condition of the physical process of soil temperature was negligible across the entire region. Surface layer drag coefficient and snow surface albedo parameterization schemes demonstrated meaningful sensitivity in localized areas, while the sensitivity index of the first snow layer or soil temperature time scheme exhibited a high level of sensitivity throughout the entire region. The uncertainty of snow depth ensemble simulation in mountainous areas is predominantly concentrated between 0.2 and 0.3 m, which is significantly higher than that in basin areas. This study aims to provide valuable insights into the judicious selection of parameterization schemes for modeling snow processes.

Funder

National Natural Science Foundation of China

Key Natural Science Research Project of Anhui Provincial Colleges

APC

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3