Selective detection of naphthalene with nanostructured WO<sub>3</sub> gas sensors prepared by pulsed laser deposition
-
Published:2016-04-08
Issue:1
Volume:5
Page:147-156
-
ISSN:2194-878X
-
Container-title:Journal of Sensors and Sensor Systems
-
language:en
-
Short-container-title:J. Sens. Sens. Syst.
Author:
Leidinger Martin,Huotari Joni,Sauerwald Tilman,Lappalainen Jyrki,Schütze Andreas
Abstract
Abstract. Pulsed laser deposition (PLD) at room temperature with a nanosecond laser was used to prepare WO3 layers on both MEMS microheater platforms and Si/SiO2 substrates. Structural characterization showed that the layers are formed of nanoparticles and nanoparticle agglomerates. Two types of layers were prepared, one at an oxygen partial pressure of 0.08 mbar and one at 0.2 mbar. The layer structure and the related gas sensing properties were shown to be highly dependent on this deposition parameter. At an oxygen pressure of 0.2 mbar, formation of ε-phase WO3 was found, which is possibly contributing to the observed increase in sensitivity of the sensor material. The gas sensing performance of the two sensor layers prepared via PLD was tested for detection of volatile organic compounds (benzene, formaldehyde and naphthalene) at ppb level concentrations, with various ethanol backgrounds (0.5 and 2 ppm) and gas humidities (30, 50 and 70 % RH). The gas sensors were operated in temperature cycled operation. For signal processing, linear discriminant analysis was performed using features extracted from the conductance signals during temperature variations as input data. Both WO3 sensor layers showed high sensitivity and selectivity to naphthalene compared to the other target gases. Of the two layers, the one prepared at higher oxygen partial pressure showed higher sensitivity and stability resulting in better discrimination of the gases and of different naphthalene concentrations. Naphthalene at concentrations down to 1 ppb could be detected with high reliability, even in an ethanol background of up to 2 ppm. The sensors show only low response to ethanol, which can be compensated reliably during the signal processing. Quantification of ppb level naphthalene concentrations was also possible with a high success rate of more than 99 % as shown by leave-one-out cross validation.
Funder
Seventh Framework Programme
Publisher
Copernicus GmbH
Subject
Electrical and Electronic Engineering,Instrumentation
Reference38 articles.
1. Balandeh, M., Mezzetti, A., Tacca, A., Leonardo, S., Marra, G., Divitini, G., Ducati, C., Medad, L., and Di Fonzo, F.: Quasi-1D hyperbranched WO3 nanostructures for low-voltage photoelectrochemical water splitting, J. Mater. Chem. A, 3, 6110–6117, https://doi.org/10.1039/C4TA06786J, 2015. 2. Balazsi, C., Wang, L., Zayim, E. O., Szilagy, I. M., Sedlackov, K., Pfeifer, J., Toth, A. L., and Gouma, P.-I.: Nanosize hexagonal tungsten oxide for gas sensing applications, J. Eur. Ceram. Soc., 28, 913–917, https://doi.org/10.1016/j.jeurceramsoc.2007.09.001, 2008. 3. Baur, T., Schütze, A., and Sauerwald, T.: Optimierung des temperaturzyklischen Betriebs von Halbleitergassensoren, tm – Technisches Messen, 82, 187–195, https://doi.org/10.1515/teme-2014-0007, 2014. 4. Bernstein, J. A., Alexis, N., Bacchus, H., Leonard Bernstein, I., Fritz, P., Horner, E., Li, N., Mason, S., Nel, A., Oullette, J., Reijula, K., Reponen, T., Seltzer, J., Smith, A., and Tarlo, S. M.: The health effects of nonindustrial indoor air pollution, J. Allergy Clin. Immun., 121, 585–591, https://doi.org/10.1016/j.jaci.2007.10.045, 2008. 5. Bur, C., Reimann, P., Andersson, M., Schütze, A., and Lloyd Spetz, A.: Increasing the Selectivity of Pt-Gate SiC Field Effect Gas Sensors by DynamicTemperature Modulation, IEEE Sens. J., 12, 1906–1913, https://doi.org/10.1109/JSEN.2011.2179645, 2012.
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|