Optimization of Machine Learning in Various Situations Using ICT-Based TVOC Sensors

Author:

Cho Jae HyukORCID,Lee Hayoun

Abstract

A computational framework using artificial intelligence (AI) has been suggested in numerous fields, such as medicine, robotics, meteorology, and chemistry. The specificity of each AI model and the relationship between data characteristics and ground truth, allowing their guidance according to each situation, has not been given. Since TVOCs (total volatile organic compounds) cause serious harm to human health and plants, the prevention of such damages with a reduction in their occurrence frequency becomes not an optional process but an essential one in manufacturing, as well as for chemical industries and laboratories. In this study, with consideration of the characteristics of the machine learning technique and ICT (information and communications technology), TVOC sensors are explored as a function of grounded data analysis and the selection of machine learning models, determining their performance in real situations. For representative scenarios, considering features from an ICT semiconductor sensor and one targeting TVOC gas, we investigated suitable analysis methods and machine learning models such as LSTM (long short-term memory), GRU (gated recurrent unit), and RNN (recurrent neural network). Detailed factors for these machine learning models with respect to the concentration of TVOC gas in the atmosphere are compared with original sensory data to obtain their accuracy. From this work, we expect to significantly minimize risk in empirical applications, i.e., maintaining homeostasis or predicting abnormal situations to construct an opportune response.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Reference31 articles.

1. An urban ecology critique on the “Smart City” model

2. Key issues for ICT applications: Impacts and implications for hospitality operations;DiPietro;Worldw. Hosp. Tour. Themes,2010

3. How smart are our environments? An updated look at the state of the art

4. Development of a ppb-level sensor based on catalytic combustion for total volatile organic compounds in indoor air

5. AWE Internationalhttps://www.aweimagazine.com/article/voc-detection-and-measurement-techniques-519/

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine Learning Algorithms for Solar Irradiance Prediction: A Recent Comparative Study;e-Prime - Advances in Electrical Engineering, Electronics and Energy;2024-03

2. Efficient Autonomous Defense System Using Machine Learning on Edge Device;Computers, Materials & Continua;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3