Evaporation from weighing precipitation gauges: impacts on automated gauge measurements and quality assurance methods

Author:

Leeper R. D.,Kochendorfer J.

Abstract

Abstract. Evaporation from a precipitation gauge can cause errors in the amount of measured precipitation. For automated weighing-bucket gauges, the World Meteorological Organization (WMO) suggests the use of evaporative suppressants and frequent observations to limit these biases. However, the use of evaporation suppressants is not always feasible due to environmental hazards and the added cost of maintenance, transport, and disposal of the gauge additive. In addition, research has suggested that evaporation prior to precipitation may affect precipitation measurements from auto-recording gauges operating at sub-hourly frequencies. For further evaluation, a field campaign was conducted to monitor evaporation and its impacts on the quality of precipitation measurements from gauges used at U.S. Climate Reference Network (USCRN) stations. Two Geonor gauges were collocated, with one gauge using an evaporative suppressant (referred to as Geonor-NonEvap) and the other with no suppressant (referred to as Geonor-Evap) to evaluate evaporative losses and evaporation biases on precipitation measurements. From June to August, evaporative losses from the Geonor-Evap gauge exceeded accumulated precipitation, with an average loss of 0.12 mm h−1. The impact of evaporation on precipitation measurements was sensitive to the choice of calculation method. In general, the pairwise method that utilized a longer time series to smooth out sensor noise was more sensitive to gauge evaporation (−4.6% bias with respect to control) than the weighted-average method that calculated depth change over a smaller window (

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference20 articles.

1. Aaltonen, A., Elomaa, E., Touminen, A., and Valkovuori, P.: Measurement of Precipitation. Proc. Symp. On Precipitation and Evaporation, Vol. 1, Slovak Hydrometeorical Institute and Swiss Federal Institute of Technology, Bratislava, Slovakia, 42–46, 1993.

2. Baker, B. C., Buckner, R., and Collins, W.: Calculation of USCRN precipitation from Geonor weighing precipitation gauge, NOAA Technical Note, Rep. USCRN-05-1, NOAA, Asheville, USA, 2005.

3. Duchon C. E.: Using vibrating-wire technology for precipitation measurements, in: Precipitation Advances in Measurement, Estimation and Prediction, edited by: Michaelides, S. C., Springer, Germany, 33–58, 2008.

4. Duchon, C. E. and Essenberg, G. R.: Comparative rainfall observations from pit and aboveground rain gauges with and without wind shields, Water Resour. Res., 37, 3253–3263, 2001.

5. Dunne, T. and Leopold, L. B.: Water loss from lakes, in: Water in Environmental Planning, W. H. Freemand and Company, San Francisco, USA, 95–125, 1978.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3