Affiliation:
1. School of Earth, Atmosphere and Environment, Monash University, Melbourne 3800, Australia
Abstract
Many design principles for rain gauges that have the capacity to record rainfall intensity have been proposed or developed. These are here grouped into 15 categories, and the abilities and limitations of each are discussed. No standard or optimum method has emerged, despite more than 80 years of effort in the last two centuries, together with prior work from the 17th C onwards. Indeed, new methods continue to be explored for both point-based and area-wide collections of intensity data. Examples include the use of signal attenuation by rain along the tower-to-tower links of cellular phone networks, monitoring the speed of vehicle windscreen wipers, and exploiting the sound or vision from security and traffic-monitoring cameras. Many of these approaches have the potential to provide vastly more observation sites than conventional meteorological stations equipped with rain gauges. Some of these contemporary approaches seek to harness the potential of crowdsourced or citizen-science data. It is hoped that the present overview of methods will provide a guide for those wishing to collect or analyses rainfall intensity data for application in areas such as soil erosion processes, ecohydrology, agrochemical washoff, or urban flash flooding. Because rainfall intensity is one of the key aspects of the hydrologic cycle likely to respond as climate change and variability proceed, the choice of appropriate data collection methods has additional contemporary importance for the monitoring of regional and global precipitation changes.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献