Spatial Reconstruction of Quantitative Precipitation Estimates Derived from Fengyun-2G Geostationary Satellite in Northeast China

Author:

Wu Hao123,Yong Bin12,Shen Zhehui4

Affiliation:

1. The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China

2. Cooperative Innovation Center for Water Safety and Hydro-Science, Hohai University, Nanjing 210098, China

3. School of Geographic Information and Tourism, Chuzhou University, Chuzhou 239000, China

4. College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China

Abstract

With the development of the Chinese Fengyun satellite series, Fengyun-2G (FY-2G) quantitative precipitation estimates (QPE) can provide real-time and high-quality precipitation data over East Asia. However, FY-2G QPE cannot offer precipitation information beyond the latitude band of 50°N due to the limitation of the observation coverage of the FY-2G-based satellite-borne sensor. To this end, a precipitation space reconstruction using the geographically weighted regression (GWR) coupled with a geographical differential analysis (GDA) (PSR2G) algorithm was developed, based on the land surface variables related to precipitation, including vegetational cover, land surface temperature, geographical location, and topographic characteristics. This study used the PSR2G-based reconstructed model to estimate the FY-2G QPE over Northeast China (the latitude band beyond 50°N) from December 2015 to November 2019 with a spatiotemporal resolution of 0.1°/month. The PSR2G-based reconstructed results were validated with the ground observations of 80 rain gauges, and also compared to the reconstructed results using random forest (RF) and GWR. The results show that the spatio-temporal pattern of PSR2G QPE is closer to ground observations than those of RF and GWR, which indicates that the PSR2G QPE is more competent to capture the spatio-temporal variation of rainfall over Northeast China than other two reconstruction methods. In addition, the reconstructed precipitation dataset using PSR2G has higher accuracy over study area than the FY-2G QPE below the band of 50°N. It suggested that PSR2G reconstruction precipitation strategies do not lose the precision of the original satellite precipitation data.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3