Evaluation of multi-season convection-permitting atmosphere – mixed-layer ocean simulations of the Maritime Continent
-
Published:2024-05-14
Issue:9
Volume:17
Page:3815-3837
-
ISSN:1991-9603
-
Container-title:Geoscientific Model Development
-
language:en
-
Short-container-title:Geosci. Model Dev.
Author:
Howard Emma, Woolnough StevenORCID, Klingaman Nicholas, Shipley DanielORCID, Sanchez ClaudioORCID, Peatman Simon C.ORCID, Birch Cathryn E.ORCID, Matthews Adrian J.ORCID
Abstract
Abstract. A multi-season convection-permitting regional climate simulation of the Maritime Continent (MC) using the Met Office Unified Model (MetUM) with 2.2 km grid spacing is presented and evaluated. The simulations pioneer the use of atmosphere–ocean coupling with the multi-column K profile parametrisation (KPP) mixed-layer ocean model in atmospheric convection-permitting climate simulations. Comparisons are made against a convection-parametrised simulation in which it is nested and which in turn derives boundary conditions from the ERA5 reanalysis. This paper describes the configuration, performance of the mean state and variability in the two simulations compared against observational datasets. The models have both minor sea surface temperature (SST) and wet precipitation biases. The diurnal cycle, representation of equatorial waves, and relationship between SST and precipitation are all improved in the convection-permitting model compared to the convection-parametrised model. The Madden–Julian oscillation (MJO) is present in both models with a faster-than-observed propagation speed. However, it is unclear whether fidelity of the MJO simulation is inherent to the model or whether it predominantly arises from the forcing at the boundaries.
Funder
Natural Environment Research Council
Publisher
Copernicus GmbH
Reference63 articles.
1. Argueso, D., Romero, R., and Homar, V.: Precipitation Features of the Maritime Continent in Parameterized and Explicit Convection Models, J. Climate, 33, 2449–2466, https://doi.org/10.1175/JCLI-D-19-0416.1, 2020. a 2. Azaneu, M., Matthews, A., Lee, G., and Heywood, K.: Seaglider data from the Indian Ocean as a part of the Equatorial Line Observations (ELO), January–April 2019, Published Data Library (PDL), https://doi.org/10.5285/efcc09dc-ed05-775c-e053-6c86abc0bb49, 2022. a 3. Baranowski, D. B., Waliser, D. E., Jiang, X., Ridout, J. A., and Flatau, M. K.: Contemporary GCM Fidelity in Representing the Diurnal Cycle of Precipitation Over the Maritime Continent, J. Geophys. Res.-Atmos., 124, 747–769, https://doi.org/10.1029/2018JD029474, 2019. a 4. Beck, H. E., Wood, E. F., Pan, M., Fisher, C. K., Miralles, D. G., van Dijk, A. I. J. M., McVicar, T. R., and Adler, R. F.: MSWEP V2 Global 3-Hourly 0.1° Precipitation: Methodology and Quantitative Assessment, B. Am. Meteorol. Soc., 100, 473–500, https://doi.org/10.1175/BAMS-D-17-0138.1, 2019. a 5. Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677–699, https://doi.org/10.5194/gmd-4-677-2011, 2011. a, b, c
|
|