Precipitation Features of the Maritime Continent in Parameterized and Explicit Convection Models

Author:

Argüeso D.1,Romero R.1,Homar V.1

Affiliation:

1. Meteorology Group, Physics Department, University of the Balearic Islands, Palma, Spain

Abstract

AbstractThe Maritime Continent is the largest archipelago in the world and a region of intense convective activity that influences Earth’s general circulation. The region features one of the warmest oceans, very complex topography, dense vegetation, and an intricate configuration of islands, which together result in very specific precipitation characteristics, such as a marked diurnal cycle. Atmospheric models poorly resolve deep convection processes that generate rainfall in the archipelago and show fundamental errors in simulating precipitation. Spatial resolution and the use of convective schemes required to represent subgrid convective circulations have been pointed out as culprits of these errors. However, models running at the kilometer scale explicitly resolve most convective systems and thus are expected to contribute to solve the challenge of accurately simulating rainfall in the Maritime Continent. Here we investigate the differences in simulated precipitation characteristics for different representations of convection, including parameterized and explicit, and at various spatial resolutions. We also explore the vertical structure of the atmosphere in search of physical mechanisms that explain the main differences identified in the rainfall fields across model experiments. Our results indicate that both increased resolution and representing convection explicitly are required to produce a more realistic simulation of precipitation features, such as a correct diurnal cycle both over land and ocean. We found that the structures of deep and shallow clouds are the main differences across experiments and thus they are responsible for differences in the timing and spatial distribution of rainfall patterns in the various convection representation experiments.

Funder

H2020 Marie Skłodowska-Curie Actions

Ministerio de Economía, Industria y Competitividad, Gobierno de España

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference63 articles.

1. Precipitation over urban areas in the western Maritime Continent using a convection-permitting model;Argüeso;Climate Dyn.,2016

2. Contemporary GCM fidelity in representing the diurnal cycle of precipitation over the Maritime Continent;Baranowski;J. Geophys. Res. Atmos.,2019

3. A new convective adjustment scheme. Part I: Observational and theoretical basis;Betts;Quart. J. Roy. Meteor. Soc.,1986

4. A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and Arctic air-mass data sets;Betts;Quart. J. Roy. Meteor. Soc.,1986

5. Evaluation of error in TRMM 3B42V7 precipitation estimates over the Himalayan region;Bharti;J. Geophys. Res. Atmos.,2015

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3