Thundercloud structures detected and analyzed based on coherent Doppler wind lidar

Author:

Wu Kenan,Wei Tianwen,Yuan Jinlong,Xia HaiyunORCID,Huang Xin,Lu GaopengORCID,Zhang Yunpeng,Liu Feifan,Zhu Baoyou,Ding Weidong

Abstract

Abstract. The studies of intracloud discharges may shed light on the microphysical structure of thunderclouds, as both the magnitude and the sign of charge separation due to graupel collides with ice crystals within the strong updrafts are influenced by the surrounding environment. Here, a compact all-fiber coherent Doppler wind lidar (CDWL) working at the 1.5 µm wavelength is applied for probing the dynamics and microphysics structure of thunderstorms. Thanks to the precise spectrum measurement, multi-component spectra signals of thunderstorms can be analyzed by the CDWL. The spectrum width, skewness, and Doppler velocity of CDWL is used to separate and identify the particle composition and polarity. In the experiment, the thundercloud properties are detected by the CDWL, 10.6 cm Doppler weather radar (DWR), and Advanced Geosynchronous Radiation Imager (AGRI) onboard Fengyun-4 satellites. In particular, the spectrum width and skewness of the thundercloud below the 0 ∘C isotherm are increased, and when a cloud-ground lightning occurs, there is additional graupel with a velocity greater than 5 m s−1. It indicates that this region is a melting layer, and lightning activity changes the motion characteristics of graupel, affecting the charge structure of the whole thundercloud. In general, our findings provide details on the velocity, phase, and composition of particles in the outside updraft region of the thunderstorm. The identification and analysis of graupel is particularly important. It is proved that the precise spectrum of CDWL is a promising indicator for studying the charge structure of thunderstorms.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3