Windshear Detection in Rain Using a 30 km Radius Coherent Doppler Wind Lidar at Mega Airport in Plateau

Author:

Xia Haiyun1234,Chen Yixiang1,Yuan Jinlong1,Su Lian2,Yuan Zhu5,Huang Shengjun5,Zhao Dexian5

Affiliation:

1. School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044, China

2. School of Earth and Space Science, University of Science and Technology of China, Hefei 230026, China

3. National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China

4. Institute of Software, Chinese Academy of Sciences, Beijing 100190, China

5. Yunnan Sub-Bureau of Southwest Regional Air Traffic Management Bureau CAAC, Kunming 650211, China

Abstract

Convective weather is often accompanied by precipitation and windshear, seriously endangering the safety of aircraft during takeoff and landing. However, under rainfall conditions, conventional wind lidars have a limited detection range due to significant signal attenuation. To solve this problem, a 200 mm temperature-controlled telescope coated with a hydrophobic film is applied in the coherent Doppler wind lidar system to improve the detection capability in rain. The maximum detection range of the lidar is extended to 30 km and demonstrated at Kunming Changshui International Airport at an altitude of 2102 m. Firstly, the detection accuracy and maximum detection range of the lidar are verified. Through the analysis of the horizontal wind field under two typical convective weather conditions, it is found that convective weather often accompanies low-level convergence and divergence structures, leading to headwind shear and crosswind shear on the airport runway. From the vertical profile, it is shown that the triggering of convective weather is accompanied by low-level southwest winds and high-altitude northeastern winds. According to the statistics of wind speed and direction on clear and rainy days over 9 months, rainy days are usually caused by the invasion of cold air from Northeast China, resulting in airport windshear. In summary, the enhanced lidar can effectively identify and analyze windshear during rainy days, which is very useful for aviation safety, especially for takeoff and landing in all weather conditions.

Funder

Natural Science Foundation of Jiangsu Province

Aeronautical Science Foundation of China

Publisher

MDPI AG

Reference43 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3