Study on Daytime Atmospheric Mixing Layer Height Based on 2-Year Coherent Doppler Wind Lidar Observations at the Southern Edge of the Taklimakan Desert

Author:

Su Lian1ORCID,Xia Haiyun12,Yuan Jinlong2,Wang Yue2,Maituerdi Amina3,He Qing4

Affiliation:

1. School of Earth and Space Science, University of Science and Technology of China, Hefei 230026, China

2. School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044, China

3. Xinjiang Uygur Autonomous Region Meteorological Service, Urumqi 830002, China

4. Institute of Desert Meteorology, China Meteorological Administration, Urumqi 830002, China

Abstract

The long-term atmospheric mixing layer height (MLH) information plays an important role in air quality and weather forecasting. However, it is not sufficient to study the characteristics of MLH using long-term high spatial and temporal resolution data in the desert. In this paper, over the southern edge of the Taklimakan Desert, the diurnal, monthly, and seasonal variations in the daytime MLH (retrieved by coherent Doppler wind lidar) and surface meteorological elements (provided by the local meteorological station) in a two-year period (from July 2021 to July 2023) were statistically analyzed, and the relationship between the two kinds of data was summarized. It was found that the diurnal average MLH exhibits a unimodal distribution, and the decrease rate in the MLH in the afternoon is much higher than the increase rate before noon. From the seasonal and monthly perspective, the most frequent deep mixing layer (>4 km) was formed in June, and the MLH is the highest in spring and summer. Finally, in terms of their mutual relationship, it was observed that the east-pathway wind has a greater impact on the formation of the deep mixing layer than the west-pathway wind; the dust weather with visibility of 1–10 km contributes significantly to the formation of the mixing layer; the temperature and relative humidity also exhibit a clear trend of a concentrated distribution at about the height of 3 km. The statistical analysis of the MLH deepens the understanding of the characteristics of dust pollution in this area, which is of great significance for the treatment of local dust pollution.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3