The CarboCount CH sites: characterization of a dense greenhouse gas observation network

Author:

Oney B.,Henne S.ORCID,Gruber N.ORCID,Leuenberger M.ORCID,Bamberger I.,Eugster W.ORCID,Brunner D.ORCID

Abstract

Abstract. We describe a new rural network of four densely placed (< 100 km apart), continuous atmospheric carbon (CO2, CH4, and CO) measurement sites in north-central Switzerland and analyze its suitability for regional-scale (~ 100–500 km) carbon flux studies. We characterize each site for the period from March 2013 to February 2014 by analyzing surrounding land cover, observed local meteorology, and sensitivity to surface fluxes, as simulated with the Lagrangian particle dispersion model FLEXPART-COSMO (FLEXible PARTicle dispersion model-Consortium for Small-Scale Modeling). The Beromünster measurements are made on a tall tower (212 m) located on a gentle hill. At Beromünster, regional CO2 signals (measurement minus background) vary diurnally from −4 to +4 ppmv, on average, and are simulated to come from nearly the entire Swiss Plateau, where 50 % of surface influence is simulated to be within 130–260 km distance. The Früebüel site measurements are made 4 m above ground on the flank of a gently sloping mountain. Nearby (< 50 km) pasture and forest fluxes exert the most simulated surface influence, except during convective summertime days when the site is mainly influenced by the eastern Swiss Plateau, which results in summertime regional CO2 signals varying diurnally from −5 to +12 ppmv and elevated summer daytime CH4 signals (+30 ppbv above other sites). The Gimmiz site measurements are made on a small tower (32 m) in flat terrain. Here, strong summertime regional signals (−5 to +60 ppmv CO2) stem from large, nearby (< 50 km) crop and anthropogenic fluxes of the Seeland region, except during warm or windy days when simulated surface influence is of regional scale (< 250 km). The Lägern-Hochwacht measurements are made on a small tower (32 m) on top of the steep Lägern crest, where simulated surface influence is typically of regional scale (130–300 km) causing summertime regional signals to vary from −5 to +8 ppmv CO2. Here, considerable anthropogenic influence from the nearby industrialized region near Zurich causes the average wintertime regional CO2 signals to be 5 ppmv above the regional signals simultaneously measured at the Früebüel site. We find that the suitability of the data sets from our current observation network for regional carbon budgeting studies largely depends on the ability of the high-resolution (2 km) atmospheric transport model to correctly capture the temporal dynamics of the stratification of the lower atmosphere at the different sites. The current version of the atmospheric transport model captures these dynamics well, but it clearly reaches its limits at the sites in steep topography and at the sites that generally remain in the surface layer. Trace gas transport and inverse modeling studies will be necessary to determine the impact of these limitations on our ability to derive reliable regional-scale carbon flux estimates in the complex Swiss landscape.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference51 articles.

1. Andreae, M. O., Artaxo, P., Brandão, C., Carswell, F. E., Ciccioli, P., da Costa, A. L., Culf, A. D., Esteves, J. L., Gash, J. H. C., Grace, J., Kabat, P., Lelieveld, J., Malhi, Y., Manzi, A. O., Meixner, F. X., Nobre, A. D., Nobre, C., Ruivo, M. d. L. P., Silva-Dias, M. A., Stefani, P., Valentini, R., von Jouanne, J., and Waterloo, M. J.: Biogeochemical cycling of carbon, water, energy, trace gases, and aerosols in Amazonia: the LBA-EUSTACH experiments, J. Geophys. Res., 107, 1–25, https://doi.org/10.1029/2001JD000524, 2002.

2. Andrews, A. E., Kofler, J. D., Trudeau, M. E., Williams, J. C., Neff, D. H., Masarie, K. A., Chao, D. Y., Kitzis, D. R., Novelli, P. C., Zhao, C. L., Dlugokencky, E. J., Lang, P. M., Crotwell, M. J., Fischer, M. L., Parker, M. J., Lee, J. T., Baumann, D. D., Desai, A. R., Stanier, C. O., De Wekker, S. F. J., Wolfe, D. E., Munger, J. W., and Tans, P. P.: CO2, CO, and CH4 measurements from tall towers in the NOAA Earth System Research Laboratory's Global Greenhouse Gas Reference Network: instrumentation, uncertainty analysis, and recommendations for future high-accuracy greenhouse gas monitoring efforts, Atmos. Meas. Tech., 7, 647–687, https://doi.org/10.5194/amt-7-647-2014, 2014.

3. Bakwin, P., Tans, P., Hurst, D., and Zhao, C.: Measurements of carbon dioxide on very tall towers: results of the NOAA/CMDL program, Tellus B, 50, 401–415, https://doi.org/10.1034/j.1600-0889.1998.t01-4-00001.x, 1998.

4. Baldauf, M., Seifert, A., Förstner, J., Majewski, D., Raschendorfer, M., and Reinhardt, T.: Operational convective-scale numerical weather prediction with the COSMO model: description and sensitivities, Mon. Weather Rev., 139, 3887–3905, https://doi.org/10.1175/MWR-D-10-05013.1, 2011.

5. Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel, W., Paw U, K. T., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities, B. Am. Meteorol. Soc., 82, 2415–2434, https://doi.org/10.1175/1520-0477(2001)0822.3.CO;2, 2001.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3