A view of the European carbon flux landscape through the lens of the ICOS atmospheric observation network

Author:

Storm IdaORCID,Karstens UteORCID,D'Onofrio ClaudioORCID,Vermeulen AlexORCID,Peters WouterORCID

Abstract

Abstract. The ICOS (Integrated Carbon Observation System) network of atmospheric measurement stations produces standardized data on greenhouse gas concentrations at 46 stations in 16 different European countries (March 2023). The placement of instruments on tall towers and mountains results in large influence regions (“concentration footprints”). The combined footprints for all the individual stations create a “lens” through which the network sees the European CO2 flux landscape. In this study, we summarize this view using quantitative metrics of the fluxes seen by individual stations and by the current and extended ICOS networks. Results are presented from both country level and pan-European perspectives, using open-source tools that we make available through the ICOS Carbon Portal. We target anthropogenic emissions from various sectors, as well as the land cover types found across Europe and their spatiotemporally varying fluxes. This recognizes different interests of different ICOS stakeholders. We specifically introduce “monitoring potential maps” to identify which regions have a relative underrepresentation of biospheric fluxes. This potential changes with the introduction of new stations, which we investigate for the planned ICOS expansion with 19 stations over the next few years. In our study focused on the summer of 2020, we find that the ICOS atmospheric station network has limited sensitivity to anthropogenic fluxes, as was intended in the current design. Its representation of biospheric fluxes follows the fractional representation of land cover and is generally well balanced considering the pan-European view. Exceptions include representation of grass and shrubland and broadleaf forest which are abundant in south-eastern European countries, particularly Croatia and Serbia. On the country scale, the representation shows larger imbalances, even within relatively densely monitored countries. The flexibility to consider individual ecosystems, countries, or their integrals across Europe demonstrates the usefulness of our analyses and can readily be reproduced for any network configuration within Europe.

Funder

Horizon 2020

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference44 articles.

1. Bacastow, R. B., Keeling, C. D., and Whorf, T. P.: Seasonal amplitude increase in atmospheric CO2 concentration at Mauna Loa, Hawaii, 1959–1982, J. Geophys. Res.-Atmos., 90, 10529–10540, https://doi.org/10.1029/jd090id06p10529, 1985.

2. Ballantyne, A. P., Alden, C. B., Miller, J. B., Tans, P. P., and White, J. W. C.: Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years, Nature, 488, 70–72, https://doi.org/10.1038/nature11299, 2012.

3. Balsamo, G., Engelen, R., Thiemert, D., Agusti-Panareda, A., Bousserez, N., Broquet, G., Brunner, D., Buchwitz, M., Chevallier, F., Choulga, M., Denier Van Der Gon, H., Florentie, L., Haussaire, J.-M., Janssens-Maenhout, G., Jones, M. W., Kaminski, T., Krol, M., Le Quéré, C., Marshall, J., McNorton, J., Prunet, P., Reuter, M., Peters, W., and Scholze, M.: The CO2 Human Emissions (CHE) Project: First Steps Towards a European Operational Capacity to Monitor Anthropogenic CO2 Emissions, Frontiers in Remote Sensing, 2, 707247, https://doi.org/10.3389/frsen.2021.707247, 2021.

4. Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., and Wood, E. F.: Present and future Köppen-Geiger climate classification maps at 1 km resolution, Scientific Data, 5, 180214, https://doi.org/10.1038/sdata.2018.214, 2018.

5. Conway, T. J., Tans, P. P., Waterman, L. S., Thoning, K. W., Kitzis, D. R., Masarie, K. A., and Zhang, N.: Evidence for interannual variability of the carbon cycle from the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network, J. Geophys. Res., 99, 22831, https://doi.org/10.1029/94jd01951, 1994.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3