Identification of spikes in continuous ground-based in situ time series of CO2, CH4 and CO: an extended experiment within the European ICOS Atmosphere network

Author:

Cristofanelli PaoloORCID,Fratticioli CosimoORCID,Hazan Lynn,Chariot Mali,Couret CedricORCID,Gazetas Orestis,Kubistin DagmarORCID,Laitinen AnttiORCID,Leskinen Ari,Laurila TuomasORCID,Lindauer MatthiasORCID,Manca Giovanni,Ramonet MichelORCID,Trisolino PamelaORCID,Steinbacher MartinORCID

Abstract

Abstract. The identification of spikes (i.e., short and high variability in the measured signals due to very local emissions occurring in the proximity of a measurement site) is of interest when using continuous measurements of atmospheric greenhouse gases (GHGs) in different applications like the determination of long-term trends and/or spatial gradients, inversion experiments devoted to the top-down quantification of GHG surface–atmosphere fluxes, the characterization of local emissions, or the quality control of GHG measurements. In this work, we analyzed the results provided by two automatic spike identification methods (i.e., the standard deviation of the background (SD) and the robust extraction of baseline signal (REBS)) for a 2-year dataset of 1 min in situ observations of CO2, CH4 and CO at 10 different atmospheric sites spanning different environmental conditions (remote, continental, urban). The sensitivity of the spike detection frequency and its impact on the averaged mole fractions on method parameters was investigated. Results for both methods were compared and evaluated against manual identification by the site principal investigators (PIs). The study showed that, for CO2 and CH4, REBS identified a larger number of spikes than SD and it was less “site-sensitive” than SD. This led to a larger impact of REBS on the time-averaged values of the observed mole fractions for CO2 and CH4. Further, it could be shown that it is challenging to identify one common algorithm/configuration for all the considered sites: method-dependent and setting-dependent differences in the spike detection were observed as a function of the sites, case studies and considered atmospheric species. Neither SD nor REBS appeared to provide a perfect identification of the spike events. The REBS tendency to over-detect the spike occurrence shows limitations when adopting REBS as an operational method to perform automatic spike detection. REBS should be used only for specific sites, mostly affected by frequent very nearby local emissions. SD appeared to be more selective in identifying spike events, and the temporal variabilities in CO2, CH4 and CO were more consistent with those of the original datasets. Further activities are needed for better consolidating the fitness for purpose of the two proposed methods and to compare them with other spike detection techniques.

Funder

Ministero dell'Università e della Ricerca

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3