Merging with crowdsourced rain gauge data improves pan-European radar precipitation estimates

Author:

Overeem AartORCID,Leijnse HiddeORCID,van der Schrier GerardORCID,van den Besselaar ElseORCID,Garcia-Marti Irene,de Vos Lotte WilhelminaORCID

Abstract

Abstract. Ground-based radar precipitation products typically need adjustment with rain gauge accumulations to achieve a reasonable accuracy. This is certainly the case for the pan-European radar precipitation products. The density of (near) real-time rain gauge accumulations from official networks is often relatively low. Crowdsourced rain gauge networks have a much higher density than conventional ones and are a potentially interesting (complementary) source to merge with radar precipitation accumulations. Here, a 1-year personal weather station (PWS) rain gauge dataset of ∼ 5 min accumulations is obtained from the private company Netatmo over the period 1 September 2019–31 August 2020, which is subjected to quality control using neighbouring PWSs and, after aggregating to 1 h accumulations, using unadjusted radar data. The PWS 1 h gauge accumulations are employed to spatially adjust OPERA radar accumulations, covering 78 % of geographical Europe. The performance of the merged dataset is evaluated against daily and disaggregated 1 h gauge accumulations from weather stations in the European Climate Assessment & Dataset (ECA&D). Results are contrasted to those from an unadjusted OPERA-based radar dataset and from EURADCLIM. The severe average underestimation for daily precipitation of ∼ 28 % from the unadjusted radar dataset diminishes to ∼ 3 % for the merged radar–PWS dataset. A station-based spatial verification shows that the relative bias in 1 h precipitation is still quite variable and suggests stronger underestimations for colder climates. A dedicated evaluation with scatter density plots reveals that the performance is indeed less good for lower temperatures, which points to limitations in observing solid precipitation by PWS gauges. The outcome of this study confirms the potential of crowdsourcing to improve radar precipitation products in (near) real time.

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3