Can stormwater runoff measurements be used for weather radar rainfall adjustment?

Author:

Nielsen Janni Mosekær1ORCID,Rasmussen Michael Robdrup1ORCID,Thorndahl Søren1ORCID,Ahm Malte Kristian Skovby2ORCID,Nielsen Jesper Ellerbæk1ORCID

Affiliation:

1. a Department of the Built Environment, Aalborg University, Thomas Manns Vej 23, Aalborg DK-9220, Denmark

2. b Aarhus Water Ltd, Hasselager Allé 29, Viby J DK-8260, Denmark

Abstract

ABSTRACT Predicting the response to rainfall in urban hydrological applications requires accurate precipitation estimates with a high spatiotemporal resolution to reflect the natural variability of rainfall. However, installing rain gauges under nearly ideal measurement conditions is often difficult in urban areas, if not impossible. This paper demonstrates the potential of deriving rainfall measurements in urban areas and bias-adjusting weather radar rainfall measurements using stormwater runoff measurements. As a supplement to point rainfall measurements from rain gauges, the developed bias adjustment approach uses catchment runoff-rainfall estimates derived from water level measurements of a stormwater detention pond. The study shows that the bias-adjusted radar product correlates highly with rain gauge measurements in the catchment. Moreover, the presented approach enables rainfall measurements within a catchment independent of rain gauges located in the catchment, making the technique highly applicable for increasing the density of ground observations and thus improving weather radar precipitation estimates over urban areas. The method also derives the catchment-specific runoff coefficient independently of expensive flow measurements in the catchment, making the method very scalable. This paper highlights the potential of using easily achievable catchment runoff-rainfall measurements to increase the density of available ground observations and thereby improve weather radar precipitation estimates.

Publisher

IWA Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3