TITAN automatic spatial quality control of meteorological in-situ observations

Author:

Båserud Line,Lussana CristianORCID,Nipen Thomas N.,Seierstad Ivar A.,Oram Louise,Aspelien Trygve

Abstract

Abstract. In science, poor quality input data will invariably lead to faulty conclusions, as in the spirit of the saying “garbage in, garbage out”. Atmospheric sciences make no exception and correct data is crucial to obtain a useful representation of the real world in meteorological, climatological and hydrological applications. Titan is a computer program for the automatic quality control of meteorological data that has been designed to serve real-time operational applications that process massive amounts of observations measured by networks of automatic weather stations. The need to quality control third-party data, such as citizen observations, within a station network that is constantly changing was an important motivation that led to the development of Titan. The quality control strategy adopted is a sequence of tests, where several of them utilize the expected spatial consistency between nearby observations. The spatial continuity can also be evaluated against independent data sources, such as numerical model output and remote sensing measurements. Examples of applications of Titan for the quality control of near-surface hourly temperature and precipitation over Scandinavia are presented. In the case of temperature, this specific application has been integrated into the operational production chain of automatic weather forecasts at the Norwegian Meteorological Institute (MET Norway). Titan is an open source project and it is made freely available for public download. One of the objectives of the Titan project is to establish a community working on common tools for automatic quality control, and the Titan program represents a first step in that direction for MET Norway. Further developments are necessary to achieve a solution that satisfies more users, for this reason we are currently working on transforming Titan into a more flexible library of functions.

Publisher

Copernicus GmbH

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3