Retrieving 3D distributions of atmospheric particles using Atmospheric Tomography with 3D Radiative Transfer – Part 1: Model description and Jacobian calculation

Author:

Loveridge JesseORCID,Levis AviadORCID,Di Girolamo LarryORCID,Holodovsky Vadim,Forster Linda,Davis Anthony B.ORCID,Schechner Yoav Y.

Abstract

Abstract. Our global understanding of clouds and aerosols relies on the remote sensing of their optical, microphysical, and macrophysical properties using, in part, scattered solar radiation. These retrievals assume that clouds and aerosols form plane-parallel, homogeneous layers and utilize 1D radiative transfer (RT) models, limiting the detail that can be retrieved about the 3D variability in cloud and aerosol fields and inducing biases in the retrieved properties for highly heterogeneous structures such as cumulus clouds and smoke plumes. To overcome these limitations, we introduce and validate an algorithm for retrieving the 3D optical or microphysical properties of atmospheric particles using multi-angle, multi-pixel radiances and a 3D RT model. The retrieval software, which we have made publicly available, is called Atmospheric Tomography with 3D Radiative Transfer (AT3D). It uses an iterative, local optimization technique to solve a generalized least squares problem and thereby find a best-fitting atmospheric state. The iterative retrieval uses a fast, approximate Jacobian calculation, which we have extended from Levis et al. (2020) to accommodate open and periodic horizontal boundary conditions (BCs) and an improved treatment of non-black surfaces. We validated the accuracy of the approximate Jacobian calculation for derivatives with respect to both the 3D volume extinction coefficient and the parameters controlling the open horizontal boundary conditions across media with a range of optical depths and single-scattering properties and find that it is highly accurate for a majority of cloud and aerosol fields over oceanic surfaces. Relative root mean square errors in the approximate Jacobian for a 3D volume extinction coefficient in media with cloud-like single-scattering properties increase from 2 % to 12 % as the maximum optical depths (MODs) of the medium increase from 0.2 to 100.0 over surfaces with Lambertian albedos <0.2. Over surfaces with albedos of 0.7, these errors increase to 20 %. Errors in the approximate Jacobian for the optimization of open horizontal boundary conditions exceed 50 %, unless the plane-parallel media providing the boundary conditions are optically very thin (∼0.1). We use the theory of linear inverse RT to provide insight into the physical processes that control the cloud tomography problem and identify its limitations, supported by numerical experiments. We show that the Jacobian matrix becomes increasing ill-posed as the optical size of the medium increases and the forward-scattering peak of the phase function decreases. This suggests that tomographic retrievals of clouds will become increasingly difficult as clouds become optically thicker. Retrievals of asymptotically thick clouds will likely require other sources of information to be successful. In Loveridge et al. (2023a; hereafter Part 2), we examine how the accuracy of the retrieved 3D volume extinction coefficient varies as the optical size of the target medium increases using synthetic data. We do this to explore how the increasing error in the approximate Jacobian and the increasingly ill-posed nature of the inversion in the optically thick limit affect the retrieval. We also assess the accuracy of retrieved optical depths and compare them to retrievals using 1D radiative transfer.

Funder

National Aeronautics and Space Administration

Horizon 2020

United States - Israel Binational Science Foundation

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3