Influence of cloud retrieval errors due to three-dimensional radiative effects on calculations of broadband shortwave cloud radiative effect
-
Published:2024-03-12
Issue:5
Volume:24
Page:3093-3114
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Ademakinwa Adeleke S., Tushar Zahid H., Zheng JianyuORCID, Wang ChenxiORCID, Purushotham Sanjay, Wang Jianwu, Meyer Kerry G., Várnai TamasORCID, Zhang ZhiboORCID
Abstract
Abstract. We investigate how cloud retrieval errors due to the three-dimensional (3D) radiative effects affect broadband shortwave (SW) cloud radiative effects (CREs) in shallow cumulus clouds. A framework based on the combination of large eddy simulations (LESs) and radiative transfer (RT) models was developed to simulate both one-dimensional (1D) and 3D radiance, as well as SW broadband fluxes. Results show that the broadband SW fluxes reflected at top of the domain, transmitted at the surface, and absorbed in the atmosphere, computed from the cloud retrievals using 1D RT (F1D∗), can provide reasonable broadband radiative energy estimates in comparison with those derived from the true cloud fields using 1D RT (F1D). The difference between these 1D-RT-simulated fluxes (F1D∗, F1D) and the benchmark 3D RT simulations computed from the true cloud field (F3D) depends primarily on the horizontal transport of photons in 3D RT, whose characteristics vary with the sun's geometry. When the solar zenith angle (SZA) is 5°, the domain-averaged F1D∗ values are in excellent agreement with the F3D, all within 7 % relative CRE bias. When the SZA is 60°, the CRE differences between calculations from F1D∗ and F3D are determined by how the cloud side-brightening and darkening effects offset each other in the radiance, retrieval, and broadband fluxes. This study suggests that although the cloud property retrievals based on the 1D RT theory may be biased due to the 3D radiative effects, they still provide CRE estimates that are comparable to or better than CREs calculated from the true cloud properties using 1D RT.
Funder
National Aeronautics and Space Administration
Publisher
Copernicus GmbH
Reference61 articles.
1. Ademakinwa, A.: Dataset for manuscript “Influence of Cloud Retrieval Errors Due to Three Dimensional Radiative Effects on Calculations of Broadband Shortwave Cloud Radiative Effect”, Version v1, Zenodo [data set], https://doi.org/10.5281/zenodo.10511732, 2024. 2. ARM LASSO Bundle Browser: LASSO LES data, ARM [data set], https://archive.arm.gov/lassobrowser, last access: 19 May 2023. 3. Barker, H. W., Jerg, M. P., Wehr, T., Kato, S., Donovan, D. P., and Hogan, R. J.: A 3D cloud-construction algorithm for the EarthCARE satellite mission, Q. J. Roy. Meteor. Soc., 137, 1042–1058, https://doi.org/10.1002/qj.824, 2011. 4. Barker, H. W., Kato, S., and Wehr, T.: Computation of Solar Radiative Fluxes by 1D and 3D Methods Using Cloudy Atmospheres Inferred from A-train Satellite Data, Surv. Geophys., 33, 657–676, https://doi.org/10.1007/s10712-011-9164-9, 2012. 5. Cahalan, R. F., Oreopoulos, L., Marshak, A., Evans, K. F., Davis, A. B., Pincus, R., Yetzer, K. H., Mayer, B., Davies, R., Ackerman, T. P., Barker, H. W., Clothiaux, E. E., Ellingson, R. G., Garay, M. J., Kassianov, E., Kinne, S., Macke, A., O'Hirok, W., Partain, P. T., Prigarin, S. M., Rublev, A. N., Stephens, G. L., Szczap, F., Takara, E. E., Várnai, T., Wen, G., and Zhuravleva, T. B.: THE I3RC: Bringing Together the Most Advanced Radiative Transfer Tools for Cloudy Atmospheres, B. Am. Meteorol. Soc., 86, 1275–1294, https://doi.org/10.1175/BAMS-86-9-1275, 2005.
|
|