Retrieving 3D distributions of atmospheric particles using Atmospheric Tomography with 3D Radiative Transfer – Part 2: Local optimization

Author:

Loveridge JesseORCID,Levis Aviad,Di Girolamo LarryORCID,Holodovsky Vadim,Forster Linda,Davis Anthony B.ORCID,Schechner Yoav Y.

Abstract

Abstract. Our global understanding of clouds and aerosols relies on the remote sensing of their optical, microphysical, and macrophysical properties using, in part, scattered solar radiation. Current retrievals assume clouds and aerosols form plane-parallel, homogeneous layers and utilize 1D radiative transfer (RT) models. These assumptions limit the detail that can be retrieved about the 3D variability in the cloud and aerosol fields and induce biases in the retrieved properties for highly heterogeneous structures such as cumulus clouds and smoke plumes. In Part 1 of this two-part study, we validated a tomographic method that utilizes multi-angle passive imagery to retrieve 3D distributions of species using 3D RT to overcome these issues. That validation characterized the uncertainty in the approximate Jacobian used in the tomographic retrieval over a wide range of atmospheric and surface conditions for several horizontal boundary conditions. Here, in Part 2, we test the algorithm's effectiveness on synthetic data to test whether the retrieval accuracy is limited by the use of the approximate Jacobian. We retrieve 3D distributions of a volume extinction coefficient (σ3D) at 40 m resolution from synthetic multi-angle, mono-spectral imagery at 35 m resolution derived from stochastically generated cumuliform-type clouds in (1 km)3 domains. The retrievals are idealized in that we neglect forward-modelling and instrumental errors, with the exception of radiometric noise; thus, reported retrieval errors are the lower bounds. σ3D is retrieved with, on average, a relative root mean square error (RRMSE) < 20 % and bias < 0.1 % for clouds with maximum optical depth (MOD) < 17, and the RRMSE of the radiances is < 0.5 %, indicating very high accuracy in shallow cumulus conditions. As the MOD of the clouds increases to 80, the RRMSE and biases in σ3D worsen to 60 % and −35 %, respectively, and the RRMSE of the radiances reaches 16 %, indicating incomplete convergence. This is expected from the increasing ill-conditioning of the inverse problem with the decreasing mean free path predicted by RT theory and discussed in detail in Part 1. We tested retrievals that use a forward model that is not only less ill-conditioned (in terms of condition number) but also less accurate, due to more aggressive delta-M scaling. This reduces the radiance RRMSE to 9 % and the bias in σ3D to −8 % in clouds with MOD ∼ 80, with no improvement in the RRMSE of σ3D. This illustrates a significant sensitivity of the retrieval to the numerical configuration of the RT model which, at least in our circumstances, improves the retrieval accuracy. All of these ensemble-averaged results are robust in response to the inclusion of radiometric noise during the retrieval. However, individual realizations can have large deviations of up to 18 % in the mean extinction in clouds with MOD ∼ 80, which indicates large uncertainties in the retrievals in the optically thick limit. Using less ill-conditioned forward model tomography can also accurately infer optical depths (ODs) in conditions spanning the majority of oceanic cumulus fields (MOD < 80), as the retrieval provides ODs with bias and RRMSE values better than −8 % and 36 %, respectively. This is a significant improvement over retrievals using 1D RT, which have OD biases between −30 % and −23 % and RRMSE between 29 % and 80 % for the clouds used here. Prior information or other sources of information will be required to improve the RRMSE of σ3D in the optically thick limit, where the RRMSE is shown to have a strong spatial structure that varies with the solar and viewing geometry.

Funder

National Aeronautics and Space Administration

Horizon 2020

United States - Israel Binational Science Foundation

H2020 Marie Skłodowska-Curie Actions

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3