Near-global distributions of overshooting tops derived from Terra and Aqua MODIS observations

Author:

Hong YulanORCID,Nesbitt Stephen W.,Trapp Robert J.ORCID,Di Girolamo LarryORCID

Abstract

Abstract. Overshooting cloud tops (OTs) form in deep convective storms when strong updrafts overshoot the tropopause. An OT is a well-known indicator of convective updrafts and severe weather conditions. Here, we develop an OT detection algorithm using thermal infrared (IR) channels and apply this algorithm to about 20 years' worth of MODIS data from both Terra and Aqua satellites to form an extensive, near-global climatology of OT occurrences. The algorithm is based on a logistic model which is trained using A-Train observations. We demonstrate that the overall accuracy of our approach is about 0.9 when the probability of the OT candidates is larger than 0.9. The OT climatology reveals a pattern that follows the climatology of deep convection and shallow convection over the midlatitude oceans during winter cold-air outbreaks. OTs appear most frequently over the Intertropical Convergence Zone (ITCZ), central and southeastern North America, tropical and subtropical South America, southeastern and southern Asia, tropical and subtropical Africa, and northern middle–high latitudes. OT spatial distributions show strong seasonal and diurnal variabilities. Seasonal OT variations shift with large-scale climate systems such as the ITCZ and local monsoonal systems, including the South Asian monsoon, North American monsoon, and West African monsoon. OT diurnal variations agree with the known diurnal cycle of convection. Maximum OT occurrences are in the afternoon over most land areas and around midnight over ocean, and the OT diurnal cycle is stronger and more varied over land than over ocean. OTs over land are usually colder than over ocean, except at around 10:30 LT (Equator-crossing time). The top 10 coldest OTs from both Terra and Aqua mostly occur over land and at night. This study provides OT climatology for the first time, as derived from 2 decades of MODIS data, that represents the longest and stable satellite records.

Funder

National Aeronautics and Space Administration

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3