Geostationary Satellite-Based Overshooting Top Detections and Their Relationship to Severe Weather over Eastern China

Author:

Sun Liangxiao1,Zhuge Xiaoyong2ORCID,Zhu Shihua1

Affiliation:

1. Jiangsu Climate Center, Nanjing 210041, China

2. Key Laboratory of Transportation Meteorology of China Meteorological Administration, Nanjing Joint Institute for Atmospheric Sciences, Nanjing 210041, China

Abstract

Overshooting tops (OTs), prominent signatures within deep convective storms, are produced by intense updrafts and are closely linked to heavy rainfall, strong winds, and other severe weather conditions. Using an OT dataset derived from multiyear observations of precipitation radar on board the Global Precipitation Measurement core observatory as a reference, the performances of two commonly used OT detection algorithms are evaluated for the Himawari-8 and Fengyun-4A satellites. The results indicate that the infrared contour-based algorithm based on Himawari-8 is the most effective for objective OT detection in eastern China. It exhibits a probability of detection (POD) of 62.1% and a false-alarm ratio (FAR) of 36.6%, outperforming others by achieving a greater POD and a lower FAR. Furthermore, based on the severe weather records from surface meteorological stations and nearby OT detections, a strong relationship is revealed between GEO-detected OTs and the occurrence of short-term heavy rainfall (e.g., ≥20 mm h−1) and extreme wind speed (e.g., ≥17.2 m s−1) events. The OT matched percentages for these events are 61.8% and 54.0%, respectively. This suggests that GEO satellite-based OT data can serve as an important objective product for forecasters to increase their understanding of severe convective storms.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3