Can soil moisture be mapped onto the terrain?

Author:

Blyth E. M.,Finch J.,Robinson M.,Rosier P.

Abstract

Abstract. Soil moisture heterogeneity has an effect on the rainfall–runoff characteristics of a landscape. The aggregate effect on the mean water balance over an area can be quantified successfully using models such as the PDM (Moore, 1986) and TOPMODEL (Beven and Kirkby, 1979). These rainfall–runoff models have been embedded in the large-scale land surface schemes used in meteorological models. However, there is also a requirement (e.g. model validation) to identify the spatial structure of the fine-scale soil moisture heterogeneity that makes up these aggregate models. In some types of landscape, this will be dictated by topography, in others by soil characteristics, or by a combination of both. A method to distribute area-average soil moisture according to the likely effect of local topography is presented and tested. The heterogeneity of the soil moisture is described by the Xinanxiang distribution (Zhao et al., 1980), commonly used to describe the natural spatial heterogeneity of the landscape. This distribution is then mapped onto the terrain using a topographic index to locate the wettest and driest areas. Soil moisture data from the Wye catchment in Wales and from the Pang catchment in Berkshire, England, are used to test the method. It is found that soil moisture data from the Wye catchment follow the topographic index reasonably well, whereas data from the quick-draining, chalky Pang catchment do not. The conclusion that topographic index is a useful indicator only in some landscapes applies equally to using this mapping method and those models that use topographic index directly. Keywords: soil moisture, heterogeneity, topographic index, data

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3