Affiliation:
1. Institute of Geology, University of Azad Jammu and Kashmir , Muzaffarabad , 13100 , Pakistan
2. Institute of Geology, University of The Punjab , Lahore , Pakistan
3. National Institute of Natural Hazards, Ministry of Emergency Management of China , Beijing , 100085 , China
4. Department of Civil, Environmental and Natural Resources Engineering, Lulea University of Technology , 97187 , Lulea , Sweden
5. Institute of Applied Technology, Thu Dau Mot University , Binh Duong province , Vietnam
Abstract
Abstract
Landslides are frequent geological hazards, mainly in the rainy season along road corridors worldwide. In the present study, we have comparatively analyzed landslide susceptibility by employing integrated geospatial approaches, i.e., data-driven, knowledge-driven, and machine learning (ML), along the main road corridors of the Muzaffarabad district. The landslide inventory of three road corridors is developed to evaluate landslide susceptibility, and eleven landslide causative factors (LCFs) were analyzed. After statistical significance analysis, these eleven LCFs generated susceptibility models using WoE, AHP, LR, and RF. Distance from roads, landcover, lithological units, and slopes are considered more influential LCFs. The performance matrix of different LSMs is evaluated through the area under the curve (AUC-ROC), overall accuracy, Kappa index, F1 score, Mean Absolute Error, and Root Mean Square Error. The AUC-ROC for WoE, AHP, LR, and RF techniques along Neelum road is 0.86, 0.82, 0.91, and 0.97, respectively, along Jhelum Valley road is 0.83, 0.81, 0.93, and 0.95, respectively, while along Kohala road is 0.89, 0.88, 0.89, and 0.92, respectively. The produced LSMs through ML (i.e., RF and LR) showed better prediction accuracies than WoE and AHP along these three road corridors. The LSMs are categorized into very high, high, moderate, and low susceptible zones along these roads. The LSM generated through hybrid models can facilitate the concerned local agencies to implement landslide mitigation policies for the landslide-prone zones along road corridors.
Subject
General Earth and Planetary Sciences,Environmental Science (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献