Ranking Importance of Topographical Surface and Subsurface Parameters on Paludification in Northern Boreal Forests Using Very High Resolution Remotely Sensed Datasets

Author:

Laamrani Ahmed,Valeria Osvaldo

Abstract

The accumulation of organic material on top of the mineral soil over time (a process called paludification) is common in Northern Boreal coniferous forests. This natural process leads to a marked decrease in forest productivity overtime. Topography both at the surface of the forest floor (i.e., above ground) and the subsurface (i.e., top of mineral soil which is underground) is known to play a critical role in the paludification process. Until recently, the availability of more accurate topographic information regarding the surface and subsurface was a limiting factor for land management and modeling of spatial organic layer thickness (OLT) variability, a proxy for paludification. However so far, no research has assessed which of these two topographic variables has the greatest influence on paludification. This study aims to assess which topographic variable (surface or subsurface) better explains paludification, using high-resolution remote sensing technology (i.e., Light Detection and Ranging: LiDAR and Ground Penetrating Radar: GPR). To this end, field soil measurements were made in over 1614 sites distributed throughout the reference Valrennes Experimental site in Canadian northern coniferous forests. Then, a machine learning model (i.e., Random Forest, RF) was implemented to rank a set of selected predictor topographic variables (i.e., slope, aspect, mean curvature, plan curvature, profile curvature, and topographic wetness index) using the Mean Decrease Gini (MDG) index as an indicator of importance. Results showed that overall 83% of the overall variance was explained by the RF selected model, while the derived subsurface topography predictors had the lowest MDGs for predicting paludification. On the other hand, the surface slope predictor had the highest MDGs and better explained paludification. This finding would be particularly useful for implanting sustainable management strategies based on the surface variables of paludified northern boreal forests. This study has also highlighted the potential of LiDAR data to provide surface topographic spatial detail information for planning and optimizing forest management activities in paludified boreal forests. This is even of great importance when we know that LiDAR variables are easier to obtain compared to GPR derived variables (subsurface topographic variables).

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3