Dust evolution across the Horsehead nebula

Author:

Schirmer T.ORCID,Abergel A.,Verstraete L.,Ysard N.ORCID,Juvela M.ORCID,Jones A. P.ORCID,Habart E.

Abstract

Context. Micro-physical processes on interstellar dust surfaces are tightly connected to dust properties (i.e. dust composition, size, and shape) and play a key role in numerous phenomena in the interstellar medium (ISM). The large disparity in physical conditions (i.e. density and gas temperature) in the ISM triggers an evolution of dust properties. The analysis of how dust evolves with the physical conditions is a stepping stone towards a more thorough understanding of interstellar dust. Aims. We highlight dust evolution in the Horsehead nebula photon-dominated region. Methods. We used Spitzer/IRAC (3.6, 4.5, 5.8 and 8 μm) and Spitzer/MIPS (24 μm) together with Herschel/PACS (70 and 160 μm) and Herschel/SPIRE (250, 350 and 500 μm) to map the spatial distribution of dust in the Horsehead nebula over the entire emission spectral range. We modelled dust emission and scattering using the THEMIS interstellar dust model together with the 3D radiative transfer code SOC. Results. We find that the nano-grain dust-to-gas ratio in the irradiated outer part of the Horsehead is 6–10 times lower than in the diffuse ISM. The minimum size of these grains is 2–2.25 times larger than in the diffuse ISM, and the power-law exponent of their size distribution is 1.1–1.4 times lower than in the diffuse ISM. In the denser part of the Horsehead nebula, it is necessary to use evolved grains (i.e. aggregates, with or without an ice mantle). Conclusions. It is not possible to explain the observations using grains from the diffuse medium. We therefore propose the following scenario to explain our results. In the outer part of the Horsehead nebula, all the nano-grain have not yet had time to re-form completely through photo-fragmentation of aggregates and the smallest of the nano-grain that are sensitive to the radiation field are photo-destroyed. In the inner part of the Horsehead nebula, grains most likely consist of multi-compositional mantled aggregates.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ALMA-IMF;Astronomy & Astrophysics;2024-07

2. JWST observations of the Horsehead photon-dominated region;Astronomy & Astrophysics;2024-06-24

3. PDRs4All;Astronomy & Astrophysics;2024-05

4. The extremely sharp transition between molecular and ionized gas in the Horsehead nebula;Astronomy & Astrophysics;2023-09

5. The Origin of Dust Polarization in the Orion Bar;The Astrophysical Journal;2023-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3