The extremely sharp transition between molecular and ionized gas in the Horsehead nebula

Author:

Hernández-Vera C.ORCID,Guzmán V. V.ORCID,Goicoechea J. R.ORCID,Maillard V.,Pety J.,Le Petit F.ORCID,Gerin M.ORCID,Bron E.ORCID,Roueff E.ORCID,Abergel A.,Schirmer T.ORCID,Carpenter J.ORCID,Gratier P.ORCID,Gordon K.,Misselt K.

Abstract

Massive stars can determine the evolution of molecular clouds by eroding and photo-evaporating their surfaces with strong ultraviolet (UV) radiation fields. Moreover, UV radiation is relevant in setting the thermal gas pressure in star-forming clouds, whose influence can extend across various spatial scales, from the rims of molecular clouds to entire star-forming galaxies. Probing the fundamental structure of nearby molecular clouds is therefore crucial to understand how massive stars shape their surrounding medium and how fast molecular clouds are destroyed, specifically at their UV-illuminated edges, where models predict an intermediate zone of neutral atomic gas between the molecular cloud and the surrounding ionized gas whose size is directly related to the exposed physical conditions. We present the highest angular resolution (~0.″5, corresponding to 207 au) and velocity-resolved images of the molecular gas emission in the Horsehead nebula, using CO J = 3–2 and HCO+ J = 4−3 observations with the Atacama Large Millimeter/submillimeter Array (ALMA). We find that CO and HCO+ are present at the edge of the cloud, very close to the ionization (H+/H) and dissociation fronts (H/H2), suggesting a very thin layer of neutral atomic gas (<650 au) and a small amount of CO-dark gas (AV = 0.006–0.26 mag) for stellar UV illumination conditions typical of molecular clouds in the Milky Way. The new ALMA observations reveal a web of molecular gas filaments with an estimated thermal gas pressure of Pth = (2.3 – 4.0) × 106 K cm−3, and the presence of a steep density gradient at the cloud edge that can be well explained by stationary isobaric photo-dissociation region (PDR) models with pressures consistent with our estimations. However, in the H II region and PDR interface, we find Pth,PDR > Pth,H II suggesting the gas is slightly compressed. Therefore, dynamical effects cannot be completely ruled out and even higher angular observations will be needed to unveil their role.

Funder

ANID

FONDECYT

ANID BASAL

ANID Millennium Science Initiative Program

Spanish MICINN

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3