Bias versus variance when fitting multi-species molecular lines with a non-LTE radiative transfer model

Author:

Roueff AntoineORCID,Pety Jérôme,Gerin Maryvonne,Ségal Léontine E.,Goicoechea Javier R.,Liszt Harvey S.ORCID,Gratier Pierre,Beslic Ivana,Einig LucasORCID,Gaudel Mathilde,Orkisz Jan H.,Palud PierreORCID,Santa-Maria Miriam G.ORCID,de Souza Magalhaes Victor,Zakardjian Antoine,Bardeau Sébastien,Bron Emeric,Chainais Pierre,Coudé Simon,Demyk Karine,Guzman Viviana V.,Hughes AnnieORCID,Languignon David,Levrier François,Lis Dariusz C.,Le Bourlot JacquesORCID,Le Petit Franck,Peretto Nicolas,Roueff EvelyneORCID,Sievers Albrecht,Thouvenin Pierre-Antoine

Abstract

Context. Robust radiative transfer techniques are requisite for efficiently extracting the physical and chemical information from molecular rotational lines. Aims. We study several hypotheses that enable robust estimations of the column densities and physical conditions when fitting one or two transitions per molecular species. We study the extent to which simplifying assumptions aimed at reducing the complexity of the problem introduce estimation biases and how to detect them. Methods. We focus on the CO and HCO+ isotopologues and analyze maps of a 50 square arcminutes field. We used the RADEX escape probability model to solve the statistical equilibrium equations and compute the emerging line profiles, assuming that all species coexist. Depending on the considered set of species, we also fixed the abundance ratio between some species and explored different values. We proposed a maximum likelihood estimator to infer the physical conditions and considered the effect of both the thermal noise and calibration uncertainty. We analyzed any potential biases induced by model misspecifications by comparing the results on the actual data for several sets of species and confirmed with Monte Carlo simulations. The variance of the estimations and the efficiency of the estimator were studied based on the Cramér-Rao lower bound. Results. Column densities can be estimated with 30% accuracy, while the best estimations of the volume density are found to be within a factor of two. Under the chosen model framework, the peak 12CO (1 – 0) is useful for constraining the kinetic temperature. The thermal pressure is better and more robustly estimated than the volume density and kinetic temperature separately. Analyzing CO and HCO+ isotopologues and fitting the full line profile are recommended practices with respect to detecting possible biases. Conclusions. Combining a non-local thermodynamic equilibrium model with a rigorous analysis of the accuracy allows us to obtain an efficient estimator and identify where the model is misspecified. We note that other combinations of molecular lines could be studied in the future.

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3