JWST observations of the Horsehead photon-dominated region

Author:

Abergel A.ORCID,Misselt K.,Gordon K. D.ORCID,Noriega-Crespo A.ORCID,Guillard P.ORCID,Van De Putte D.ORCID,Witt A. N.ORCID,Ysard N.ORCID,Baes M.ORCID,Beuther H.ORCID,Bouchet P.ORCID,Brandl B. R.ORCID,Elyajouri M.ORCID,Kannavou O.,Kendrew S.ORCID,Klassen P.ORCID,Trahin B.ORCID

Abstract

Context. The James Webb Space Telescope (JWST) has captured the sharpest infrared images ever taken of the Horsehead nebula, a prototypical moderately irradiated photon-dominated region (PDR) that is fully representative of most of the UV-illuminated molecular gas in the Milky Way and star-forming galaxies. Aims. We investigate the impact of far-ultraviolet (FUV) radiation emitted by a massive star on the edge of a molecular cloud in terms of photoevaporation, ionization, dissociation, H2 excitation, and dust heating. We also aim to constrain the structure of the edge of the PDR and its illumination conditions. Methods. We used NIRCam and MIRI to obtain 17 broadband and 6 narrowband maps of the illuminated edge of the Horsehead across a wide spectral range from 0.7 to 28 µm. We mapped the dust emission, including the aromatic and aliphatic infrared (IR) bands, scattered light, and several gas phase lines (e.g., Paa, Brα, H2 1-0 S(1) at 2.12 µm). For our analysis, we also associated two HST-WFC3 maps at 1.1 and 1.6 µm, along with HST-STIS spectroscopic observations of the Ha line. Results. We probed the structure of the edge of the Horsehead and resolved its spatial complexity with an angular resolution of 0.1 to 1″ (equivalent to 2 × 10−4 to 2 × 10−3 pc or 40 to 400 au at the distance of 400 pc). We detected a network of faint striated features extending perpendicularly to the PDR front into the HII region in NIRCam and MIRI filters sensitive to nano-grain emission, as well as in the HST filter at 1.1 µm, which traces light scattered by larger grains. This may indeed figure as the first detection of the entrainment of dust particles in the evaporative flow. The filamentary structure of the 1-0 S(1) line of H2 at the illuminated edge of the PDR presents numerous sharp sub-structures on scales as small as 1.5″. An excess of H2 emission compared to dust emission is found all along the edge, in a narrow layer (width around 1″, corresponding to 2 × 10−3 pc or 400 au) directly illuminated by σ-Orionis. The ionization front and the dissociation front appear at distances 1–2″ behind the external edge of the PDR and seem to spatially coincide, indicating a very small thickness of the neutral atomic layer (below 100 au). All broadband maps present strong color variations between the illuminated edge and the internal regions. This can be explained by dust attenuation in a scenario where the illuminating star σ-Orionis is slightly inclined compared to the plane of the sky, so that the Horsehead is illuminated from behind at an oblique angle. The deviations from predictions of the measured emissions in the Hα, Paα, and Brα lines also indicate dust attenuation. With a very simple model, we used the data to derive the main spectral features of the extinction curve. A small excess of extinction at 3 µm may be attributed to icy H2O mantles onto grains formed in dense regions. We also derived attenuation profiles from 0.7 to 25 µm across the PDR. In all lines of sight crossing the inner regions of the Horsehead, especially around the IR peak position, it appears that dust attenuation is non-negligible over the entire spectral range of the JWST.

Funder

NASA

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3