Exploring the nature of ambiguous merging systems: GW190425 in low latency

Author:

Barbieri C.,Salafia O. S.ORCID,Colpi M.,Ghirlanda G.ORCID,Perego A.ORCID

Abstract

GW190425 is a recently discovered gravitational wave (GW) source whose individual binary components are consistent with being neutron stars (NSs). However, the source-frame chirp mass 1.44 ± 0.02 M is larger than that of any double NS system known as yet, and it falls in the ‘ambiguous’ interval for which the presence of a black hole (BH) cannot be ruled out from the GW signal analysis alone. GW190425 might host an NS and a light BH, with a mass in the so-called lower mass gap. No electromagnetic (EM) counterpart has been associated with this event, due to the poorly informative sky localisation and larger distance compared to GW170817. We construct kilonova (KN) light curve models for GW190425, in both the double NS and BH-NS scenarios, considering two equations of state (EoSs) consistent with current constraints from GW170817 and the NICER results, including BH spin effects, and testing different fitting formulae for the ejecta mass. According to our models, the putative presence of a light BH in GW190425 would have produced a brighter KN emission compared to the double NS case, ideally leading to the possibility of distinguishing the nature of the binary. However, depending on the adopted fitting formula for the ejecta, the feasibility of this distinction might depend on the EoS and on the BH spin. Concerning candidate counterparts of GW190425, classified later on as supernovae, our models could have been used to discard two transients detected in their early r-band evolution, as these fall outside the phase space encompassed by our models. We conclude that combining the chirp mass and distance information from the GW signal with a library of KN light curves can help in identifying the EM counterpart early on, and we stress that the low-latency release of the chirp mass in this interval of ambiguous values can be vital for successful EM follow-ups.

Funder

Ministero dell'Università e della Ricerca

European Cooperation in Science and Technology

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3