“Extended Emission” from Fallback Accretion onto Merger Remnants

Author:

Musolino CarloORCID,Duqué RaphaëlORCID,Rezzolla LucianoORCID

Abstract

Abstract Using a set of general-relativistic magnetohydrodynamics simulations that include proper neutrino transfer, we assess for the first time the role played by the fallback accretion onto the remnant from a binary neutron star merger over a timescale of hundreds of seconds. In particular, we find that, independently of the equation of state, the properties of the binary, and the fate of the remnant, the fallback material reaches a total mass of ≳10−3 M , i.e., about 50% of the unbound matter, and that the fallback accretion rate follows a power law in time with slope ∼t −5/3. Interestingly, the timescale of the fallback and the corresponding accretion luminosity are in good agreement with the so-called “extended emission” observed in short gamma-ray bursts (GRBs). Using a simple electromagnetic emission model based on the self-consistent thermodynamical state of the fallback material heated by r-process nucleosynthesis, we show that this fallback material can shine in gamma and X-rays with luminosities ≳1048 erg s−1 for hundreds of seconds, thus making it a good and natural candidate to explain the extended emission in short GRBs. Additionally, our model for fallback emission reproduces well and rather naturally some of the phenomenological traits of extended emission, such as its softer spectra with respect to the prompt emission and the presence of exponential cutoffs in time. Our results clearly highlight that fallback flows onto merger remnants cannot be neglected, and the corresponding emission represents a very promising and largely unexplored avenue to explain the complex phenomenology of GRBs.

Funder

EC ∣ European Research Council

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3