Gravitational-wave Electromagnetic Counterpart Korean Observatory (GECKO): GECKO Follow-up Observation of GW190425

Author:

Paek Gregory S. H.ORCID,Im MyungshinORCID,Kim JoonhoORCID,Lim GuORCID,Park BomiORCID,Choi ChangsuORCID,Kim SophiaORCID,Barbieri ClaudioORCID,Salafia Om Sharan,Paek InsuORCID,Shin SuhyunORCID,Seo Jinguk,Lee Hyung MokORCID,Lee Chung-UkORCID,Kim Seung-LeeORCID,Sung Hyun-IlORCID

Abstract

Abstract One of the keys to the success of multimessenger astronomy is the rapid identification of the electromagnetic wave counterpart, kilonova (KN), of the gravitational-wave (GW) event. Despite its importance, it is hard to find a KN associated with a GW event, due to a poorly constrained GW localization map and numerous signals that could be confused as a KN. Here, we present the Gravitational-wave Electromagnetic wave Counterpart Korean Observatory (GECKO) project, the GECKO observation of GW190425, and prospects of GECKO in the fourth observing run (O4) of the GW detectors. We outline our follow-up observation strategies during O3. In particular, we describe our galaxy-targeted observation criteria that prioritize based on galaxy properties. Armed with this strategy, we performed an optical and/or near-infrared follow-up observation of GW190425, the first binary neutron star merger event during the O3 run. Despite a vast localization area of 7460 deg2, we observed 621 host galaxy candidates, corresponding to 29.5% of the scores we assigned, with most of them observed within the first 3 days of the GW event. Ten transients were discovered during this search, including a new transient with a host galaxy. No plausible KN was found, but we were still able to constrain the properties of potential KNe using upper limits. The GECKO observation demonstrates that GECKO can possibly uncover a GW170817-like KN at a distance <200 Mpc if the localization area is of the order of hundreds of square degrees, providing a bright prospect for the identification of GW electromagnetic wave counterparts during the O4 run.

Funder

National Research Foundation of Korea

Ministry of Science and ICT, South Korea

Publisher

American Astronomical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3