Uncovering the stellar structure of the dusty star-forming galaxy GN20 at z = 4.055 with MIRI/JWST

Author:

Colina L.,Crespo Gómez A.,Álvarez-Márquez J.,Bik A.,Walter F.,Boogaard L.,Labiano A.,Peissker F.,Pérez-González P.,Östlin G.,Greve T. R.,Nørgaard-Nielsen H. U.,Wright G.,Alonso-Herrero A.,Azollini R.,Caputi K. I.,Dicken D.,García-Marín M.,Hjorth J.,Ilbert O.,Kendrew S.,Pye J. P.,Tikkanen T.,van der Werf P.,Costantin L.,Iani E.,Gillman S.,Jermann I.,Langeroodi D.,Moutard T.,Rinaldi P.,Topinka M.,van Dishoeck E. F.,Güdel M.,Henning Th.,Lagage P. O.,Ray T.,Vandenbussche B.

Abstract

Luminous infrared galaxies at high redshifts (z > 4) include extreme starbursts that build their stellar mass over short periods of time, that is, of 100 Myr or less. These galaxies are considered to be the progenitors of massive quiescent galaxies at intermediate redshifts (z ∼ 2) but their stellar structure and buildup is unknown. Here, we present the first spatially resolved near-infrared (rest-frame 1.1 μm) imaging of GN20, one of the most luminous dusty star-forming galaxies known to date, observed at an epoch when the Universe was only 1.5 Gyr old. The 5.6 μm image taken with the JWST Mid-Infrared Instrument (MIRI/JWST) shows that GN20 is a very luminous galaxy (M1.1 μm,  AB = −25.01, uncorrected for internal extinction), with a stellar structure composed of a conspicuous central source and an extended envelope. The central source is an unresolved nucleus that carries 9% of the total flux. The nucleus is co-aligned with the peak of the cold dust emission, and offset by 3.9 kpc from the ultraviolet stellar emission. The diffuse stellar envelope is similar in size (3.6 kpc effective radius) to the clumpy CO molecular gas distribution. The centroid of the stellar envelope is offset by 1 kpc from the unresolved nucleus, suggesting GN20 is involved in an interaction or merger event supported by its location as the brightest galaxy in a proto-cluster. Additional faint stellar clumps appear to be associated with some of the UV- and CO-clumps. The stellar size of GN20 is larger by a factor of about 3 to 5 than known spheroids, disks, and irregulars at z ∼ 4, while its size and low Sérsic index are similar to those measured in dusty, infrared luminous galaxies at redshift 2 of the same mass (∼1011M). GN20 has all the ingredients necessary for evolving into a massive spheroidal quiescent galaxy at intermediate redshift: it is a large, luminous galaxy at z = 4.05 involved in a short and massive starburst centred in the stellar nucleus and extended over the entire galaxy, out to radii of 4 kpc, and likely induced by the interaction or merger with a member of the proto-cluster.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3