JWST/CEERS sheds light on dusty star-forming galaxies: Forming bulges, lopsidedness, and outside-in quenching at cosmic noon

Author:

Le Bail AurélienORCID,Daddi EmanueleORCID,Elbaz David,Dickinson Mark,Giavalisco Mauro,Magnelli Benjamin,Gómez-Guijarro CarlosORCID,Kalita Boris S.,Koekemoer Anton M.ORCID,Holwerda Benne W.,Bournaud Frédéric,de la Vega Alexander,Calabrò Antonello,Dekel Avishai,Cheng Yingjie,Bisigello Laura,Franco Maximilien,Costantin Luca,Lucas Ray A.,Pérez-González Pablo G.,Lu ShiyingORCID,Wilkins Stephen M.,Arrabal Haro Pablo,Bagley Micaela B.,Finkelstein Steven L.,Kartaltepe Jeyhan S.,Papovich Casey,Pirzkal Nor,Yung L. Y. AaronORCID

Abstract

Context. We investigate the morphology and resolved physical properties of a sample of 22 IR-selected dusty star-forming galaxies at cosmic noon using the James Webb Space Telescope NIRCam images obtained in the EGS field for the CEERS survey. The exceptional resolution of the NIRCam images allowed us to spatially resolve these galaxies up to 4.4 μm and identify their bulge or core even when very extinguished by dust. Aims. The goal of this study is to obtain a better understanding of the formation and evolution of FIR-bright galaxies by spatially resolving their properties using JWST in order to look through the dust and bridge the gap between the compact FIR sources and the larger optical star-forming galaxies. Methods. Based on red-green-blue images from the F115W, F200W, and F444W filters, we divided each galaxy into several uniformly colored regions, fit their respective SEDs, and measured physical properties. After classifying each region as star forming or quiescent, we assigned galaxies to three classes depending on whether active star formation is located in the core, in the disk, or in both. Results. (i) We find that the galaxies at a higher redshift tend to have a fragmented disk with a low core mass fraction. They are at an early stage of bulge formation. When moving toward a lower redshift, the core mass fraction increases, and the bulge growth is associated with a stabilization of the disk, which translates into less patches and clumps. The NIRCam data clearly point toward bulge formation in preexisting disks. (ii) Lopsidedness is a very common feature of DSFGs. It has been wrongly overlooked for a long time and could have a major impact on the evolution of DSFGs. (iii) Twenty-three percent of the galaxies have a star-forming core embedded in a quiescent disk. They seem to be undergoing outside-in quenching, often facilitated by their strong lopsidedness inducing instabilities. (iv) We show that half of our galaxies with star formation concentrated in their core are good sub-millimeter galaxy near-IR counterpart candidates, demonstrating that compact SMGs are usually surrounded by a larger, less obscured disk. (v) Finally, we found surprising evidence for clump-like substructures being quiescent or residing in quiescent regions. Conclusions. This work demonstrates the major impact JWST/NIRCam has on understanding the complexity of the evolution of distant massive galaxies regarding bulge formation and quenching mechanisms.

Funder

Université Paris-Saclay

Publisher

EDP Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3