Abstract
Context. Protoplanetary disks, the birthplaces of planets, commonly feature bright rings and dark gaps in both continuum and line emission maps. Accreting planets interact with the disk, not only through gravity, but also by changing the local irradiation and elemental abundances, which are essential ingredients for disk chemistry.
Aims. We propose that giant planet accretion can leave chemical footprints in the gas local to the planet, which potentially leads to the spatial coincidence of molecular emissions with the planet in the ALMA observations.
Methods. Through 2D multi-fluid hydrodynamical simulations in Athena++ with built-in sublimation, we simulated the process of an accreting planet locally heating up its vicinity, opening a gas gap in the disk, and creating the conditions for C-photochemistry.
Results. An accreting planet located outside the methane snowline can render the surrounding gas hot enough to sublimate the C-rich organics off pebbles before they are accreted by the planet. This locally elevates the disk gas-phase C/O ratio, providing a potential explanation for the C2H line-emission rings observed with ALMA. In particular, our findings provide an explanation for the MWC 480 disk, where previous work identified a statistically significant spatial coincidence of line-emission rings inside a continuum gap.
Conclusions. Our findings present a novel view of linking the gas accretion of giant planets and their natal disks through the chemistry signals. This model demonstrates that giant planets can actively shape their forming chemical environment, moving beyond the traditional understanding of the direct mapping of primordial disk chemistry onto planets.
Funder
National Natural Science Foundation of China
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献