Chemistry across dust and gas gaps in protoplanetary disks

Author:

Leemker M.ORCID,Booth A. S.,van Dishoeck E. F.ORCID,Wölfer L.,Dent B.

Abstract

Context. Nearby extended protoplanetary disks are commonly marked by prominent rings in dust emission, possibly carved by forming planets. High-resolution observations show that both the dust and the gas are structured. These molecular structures may be related to radial and azimuthal density variations in the disk and/or the disk chemistry. Aims. The aim of this work is to identify the expected location and intensity of rings seen in molecular line emission in gapped disks while exploring a range of physical conditions across the gap. In particular, we aim to model the molecular rings that are, in contrast with most other gapped disks, co-spatial with the dust rings at ~20 and ~200 au in the HD 100546 disk using the thermochemical code DALI. Methods. We modelled observations with the Atacama Large Millimeter/submillimeter Array (ALMA) of CO isotopologues, [C I], HCN, CN, C2H, NO, and HCO+ in the HD 100546 disk. An axisymmetric 3D thermochemical model reproducing the radial profiles of the CO isotopologue observations and the double ring seen in continuum emission was used to make predictions for various emission lines. The effect of the amount of gas in the dust gap, the C/O ratio, an attenuated background UV radiation field, and the flaring index on the radial distribution of different molecules were investigated. Results. The fiducial model of a gapped disk with a gas cavity at 0–15 au, a dust cavity at 0–20 au, and a gas and dust gap at 40–175 au provides a good fit to the continuum and the CO isotopologues in the HD 100546 disk. In particular, the CO isotopologue emission is consistent with a shallow gas gap with no more than a factor of approximately ten drop in gas density at 40–175 au. Similar to the CO isotopologues, the HCN and HCO+ model predictions reproduce the data within a factor of a few in most disk regions. However, the predictions for the other atom and molecules, [C I], CN, C2H, and NO, neither match the intensity nor the morphology of the observations. An exploration of the parameter space shows that, in general, the molecular emission rings are only co-spatial with the dust rings if the gas gap between the dust rings is depleted by at least four orders of magnitude in gas or if the C/O ratio of the gas varies as a function of radius. For shallower gaps the decrease in the UV field roughly balances the effect of a higher gas density for UV tracers such as CN, C2H, and NO. Therefore, the CN, C2H, and NO radicals are not good tracers of the gas gap depth. In the outer regions of the disk around 300 au, these UV tracers are also sensitive to the background UV field incident on the disk. Reducing the background UV field by a factor of ten removes the extended emission and outer ring seen in CN and C2H, respectively, and reduces the ring seen in NO at 300 au. The C/O ratio primarily effects the intensity of the lines without changing the morphology much. The [C I], HCN, CN, and C2H emission all increase with increasing C/O, whereas the NO emission shows a more complex dependence on the C/O ratio depending on the disk radius. Conclusions. CO isotopologues and HCO+ emission trace gas gaps and gas gap depths in disks. The molecular rings in HCN, CN, C2H, and NO predicted by thermochemical models do not naturally coincide with those seen in the dust, contrary to what is observed in the HD 100546 disk. This could be indicative of a radially varying C/O ratio in the HD 100546 disk with a C/O above one in a narrow region across the dust rings, together with a shallow gas gap that is depleted by a factor of approximately ten in gas, and a reduced background UV field. The increase in the C/O ratio to approximately greater than one could point to the destruction of some of the CO, the liberation of carbon from ice and grains, or, in the case of the outer ring, it could point to second generation gas originating from the icy dust grains.

Funder

NWO

ERC

Netherlands Research School for Astronomy

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3