The space weather around the exoplanet GJ 436b

Author:

Bellotti S.,Fares R.,Vidotto A. A.,Morin J.,Petit P.,Hussain G. A. J.,Bourrier V.,Donati J. F.,Moutou C.,Hébrard É. M.

Abstract

Context. The space environment in which planets are embedded mainly depends on the host star and impacts the evolution of the planetary atmosphere. The quiet M dwarf GJ 436 hosts a close-in hot Neptune which is known to feature a comet-like tail of hydrogen atoms that escaped from its atmosphere due to energetic stellar irradiation. Understanding such star-planet interactions is essential to shed more light on planet formation and evolution theories, in particular the scarcity of Neptune-sized planets below a 3 d orbital period, also known as the ‘Neptune desert’. Aims. We aimed to characterise the stellar environment around GJ 436, which requires accurate knowledge of the stellar magnetic field. The latter is studied efficiently with spectropolarimetry, since it is possible to recover the geometry of the large-scale magnetic field by applying tomographic inversion on time series of circularly polarised spectra. Methods. We used spectropolarimetric data collected in the optical domain with Narval in 2016 to compute the longitudinal magnetic field, examine its periodic content via Lomb-Scargle periodogram and Gaussian process regression analysis, and finally reconstruct the large-scale field configuration by means of Zeeman-Doppler imaging. Results. We found an average longitudinal field of −12 G and a stellar rotation period of 46.6 d using a Gaussian process model and 40.1 d using Zeeman-Doppler imaging, which are both consistent with the literature. The Lomb-Scargle analysis did not reveal any significant periodicity. The reconstructed large-scale magnetic field is predominantly poloidal, dipolar, and axisymmetric, with a mean strength of 16 G. This is in agreement with magnetic topologies seen for other stars of a similar spectral type and rotation rate.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The space weather around the exoplanet GJ 436b;Astronomy & Astrophysics;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3