The space weather around the exoplanet GJ 436b

Author:

Vidotto A. A.,Bourrier V.,Fares R.,Bellotti S.,Donati J. F.,Petit P.,Hussain G. A. J.,Morin J.

Abstract

The M dwarf star GJ 436 hosts a warm-Neptune that is losing a substantial amount of atmosphere, which is shaped by the interactions with the wind of the host star. The stellar wind is formed by particles and magnetic fields that shape the exo-space weather around the exoplanet GJ 436b. Here, we use the recently published magnetic map of GJ 436 to model its 3D Alfvén-wave-driven wind. We compared our results with previous transmission spectroscopic models and measurements of non-thermal velocities at the transition region of GJ 436; our models indicate that the wind of GJ 436 is powered by a smaller flux of Alfvén waves than that powering the wind of the Sun. This suggests that the canonical flux of Alfvén waves assumed in solar wind models might not be applicable to the winds of old M dwarf stars. Compared to the solar wind, GJ 436’s wind has a weaker acceleration and an extended sub-Alfvénic region. This is important because it places the orbit of GJ 436b inside the region dominated by the stellar magnetic field (i.e. inside the Alfvén surface). Due to the sub-Alfvénic motion of the planet through the stellar wind, magnetohydrodynamic waves and particles released in reconnection events can travel along the magnetic field lines towards the star, which could power the anomalous ultraviolet flare distribution recently observed in the system. For an assumed planetary magnetic field ofBp≃ 2 G, we derive the power released by stellar wind-planet interactions asƤ~ 1022−1023erg s−1, which is consistent with the upper limit of 1026erg s−1derived from ultraviolet lines. We further highlight that, because star-planet interactions depend on stellar wind properties, observations that probe these interactions and the magnetic map used in 3D stellar wind simulations should be contemporaneous for deriving realistic results.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3