The JADE code: Coupling secular exoplanetary dynamics and photo-evaporation

Author:

Attia O.ORCID,Bourrier V.ORCID,Eggenberger P.,Mordasini C.ORCID,Beust H.,Ehrenreich D.ORCID

Abstract

Close-in planets evolve under extreme conditions, which raises questions about their origins and current nature. Two evolutionary mechanisms thought to play a predominant role are orbital migration, which brings them close to their star, and atmospheric escape under the resulting increased irradiation. Yet their relative roles remain poorly understood, in part because we lack numerical models that couple the two mechanisms with high precision and on secular timescales. To address this need, we developed the Joining Atmosphere and Dynamics for Exoplanets (JADE) code, which simulates the secular atmospheric and dynamical evolution of a specific planet around its star, and can include the perturbation induced by a distant third body. On the dynamical side, the three dimensional evolution of the orbit is modeled under stellar and planetary tidal forces, a relativistic correction, and the action of the distant perturber. On the atmospheric side, the vertical structure of the atmosphere is integrated over time based on its thermodynamical properties, inner heating, and the evolving stellar irradiation, which results, in particular, in extreme ultraviolet induced photo-evaporation. The JADE code is benchmarked on GJ436 b, which is a prototype of the evaporating giants on eccentric, misaligned orbits at the edge of the hot Neptunes desert. We confirm previous results that the orbital architecture of GJ436 b is well explained by Kozai migration and bring to light a strong interplay between its atmospheric and orbital evolution. During the resonance phase, the atmosphere pulsates in tune with the Kozai cycles, which leads to stronger tides and an earlier migration. This triggers a strong atmospheric evaporation several billion years after the planet formed, refining the paradigm that mass loss is dominant in the early age of close-in planets. These results suggest that the edge of the desert could be formed of warm Neptunes whose evaporation was delayed by Kozai migration. They strengthen the importance of coupling atmospheric and dynamical evolution over secular timescales, which the JADE code will allow for one to simulate for a wide range of systems.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3