Tensor-to-scalar ratio forecasts for extended LiteBIRD frequency configurations

Author:

Fuskeland U.,Aumont J.,Aurlien R.,Baccigalupi C.,Banday A. J.,Eriksen H. K.,Errard J.,Génova-Santos R. T.,Hasebe T.,Hubmayr J.,Imada H.,Krachmalnicoff N.,Lamagna L.,Pisano G.,Poletti D.,Remazeilles M.,Thompson K. L.,Vacher L.,Wehus I. K.,Azzoni S.,Ballardini M.,Barreiro R. B.,Bartolo N.,Basyrov A.,Beck D.,Bersanelli M.,Bortolami M.,Brilenkov M.,Calabrese E.,Carones A.,Casas F. J.,Cheung K.,Chluba J.,Clark S. E.,Clermont L.,Columbro F.,Coppolecchia A.,D’Alessandro G.,de Bernardis P.,de Haan T.,de la Hoz E.,De Petris M.,Della Torre S.,Diego-Palazuelos P.,Finelli F.,Franceschet C.,Galloni G.,Galloway M.,Gerbino M.,Gervasi M.,Ghigna T.,Giardiello S.,Gjerløw E.,Gruppuso A.,Hargrave P.,Hattori M.,Hazumi M.,Hergt L. T.,Herman D.,Herranz D.,Hivon E.,Hoang T. D.,Kohri K.,Lattanzi M.,Lee A. T.,Leloup C.,Levrier F.,Lonappan A. I.,Luzzi G.,Maffei B.,Martínez-González E.,Masi S.,Matarrese S.,Matsumura T.,Migliaccio M.,Montier L.,Morgante G.,Mot B.,Mousset L.,Nagata R.,Namikawa T.,Nati F.,Natoli P.,Nerval S.,Novelli A.,Pagano L.,Paiella A.,Paoletti D.,Pascual-Cisneros G.,Patanchon G.,Pelgrims V.,Piacentini F.,Piccirilli G.,Polenta G.,Puglisi G.,Raffuzzi N.,Ritacco A.,Rubino-Martin J. A.,Savini G.,Scott D.,Sekimoto Y.,Shiraishi M.,Signorelli G.,Stever S. L.,Stutzer N.,Sullivan R. M.,Takakura H.,Terenzi L.,Thommesen H.,Tristram M.,Tsuji M.,Vielva P.,Weller J.,Westbrook B.,Weymann-Despres G.,Wollack E. J.,Zannoni M.

Abstract

LiteBIRD is a planned JAXA-led cosmic microwave background (CMB) B-mode satellite experiment aiming for launch in the late 2020s, with a primary goal of detecting the imprint of primordial inflationary gravitational waves. Its current baseline focal-plane configuration includes 15 frequency bands between 40 and 402 GHz, fulfilling the mission requirements to detect the amplitude of gravitational waves with the total uncertainty on the tensor-to-scalar ratio, δr, down to δr < 0.001. A key aspect of this performance is accurate astrophysical component separation, and the ability to remove polarized thermal dust emission is particularly important. In this paper we note that the CMB frequency spectrum falls off nearly exponentially above 300 GHz relative to the thermal dust spectral energy distribution, and a relatively minor high frequency extension can therefore result in even lower uncertainties and better model reconstructions. Specifically, we compared the baseline design with five extended configurations, while varying the underlying dust modeling, in each of which the High-Frequency Telescope (HFT) frequency range was shifted logarithmically toward higher frequencies, with an upper cutoff ranging between 400 and 600 GHz. In each case, we measured the tensor-to-scalar ratio r uncertainty and bias using both parametric and minimum-variance component-separation algorithms. When the thermal dust sky model includes a spatially varying spectral index and temperature, we find that the statistical uncertainty on r after foreground cleaning may be reduced by as much as 30–50% by extending the upper limit of the frequency range from 400 to 600 GHz, with most of the improvement already gained at 500 GHz. We also note that a broader frequency range leads to higher residuals when fitting an incorrect dust model, but also it is easier to discriminate between models through higher χ2 sensitivity. Even in the case in which the fitting procedure does not correspond to the underlying dust model in the sky, and when the highest frequency data cannot be modeled with sufficient fidelity and must be excluded from the analysis, the uncertainty on r increases by only about 5% for a 500 GHz configuration compared to the baseline.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dissipative inflation via scalar production;Journal of Cosmology and Astroparticle Physics;2023-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3