A minimal power-spectrum-based moment expansion for CMB B-mode searches

Author:

Azzoni S.,Abitbol M.H.,Alonso D.,Gough A.,Katayama N.,Matsumura T.

Abstract

Abstract The characterization and modeling of polarized foregrounds has become a critical issue in the quest for primordial B-modes. A typical method to proceed is to factorize and parametrize the spectral properties of foregrounds and their scale dependence (i.e. assuming that foreground spectra are well described everywhere by their sky average). Since in reality foreground properties vary across the Galaxy, this assumption leads to inaccuracies in the model that manifest themselves as biases in the final cosmological parameters (in this case the tensor-to-scalar ratio r). This is particularly relevant for surveys over large fractions of the sky, such as the Simons Observatory (SO), where the spectra should be modeled over a distribution of parameter values. Here we propose a method based on the existing “moment expansion” approach to address this issue in a power-spectrum-based analysis that is directly applicable in ground-based multi-frequency data. Additionally, the method uses only a small set of parameters with simple physical interpretation, minimizing the impact of foreground uncertainties on the final B-mode constraints. We validate the method using SO-like simulated observations, recovering an unbiased estimate of the tensor-to-scalar ratio r with standard deviation σ(r) ≃ 0.003, compatible with official forecasts. When applying the method to the public BICEP2/Keck data, we find an upper bound r < 0.06 (95% C.L.), compatible with the result found by BICEP2/Keck when parametrizing spectral index variations through a scale-independent frequency decorrelation parameter. We also discuss the formal similarities between the power spectrum-based moment expansion and methods used in the analysis of CMB lensing.

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics

Reference83 articles.

1. A Probe of primordial gravity waves and vorticity;Kamionkowski;Phys. Rev. Lett.,1997

2. Signature of gravity waves in polarization of the microwave background;Seljak;Phys. Rev. Lett.,1997

3. What would we learn by detecting a gravitational wave signal in the cosmic microwave background anisotropy?;Lyth;Phys. Rev. Lett.,1997

4. Spectrum of relict gravitational radiation and the early state of the universe;Starobinsky;JETP Lett.,1979

5. The Standard Model Higgs boson as the inflaton;Bezrukov;Phys. Lett. B,2008

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3