Foreground separation and constraints on primordial gravitational waves with the PICO space mission

Author:

Aurlien Ragnhild,Remazeilles Mathieu,Belkner Sebastian,Carron Julien,Delabrouille Jacques,Eriksen Hans Kristian,Flauger Raphael,Fuskeland Unni,Galloway Mathew,Górski Krzysztof M.,Hanany Shaul,Hensley Brandon S.,Colin Hill J.,Lawrence Charles R.,Pryke Clement,van Engelen Alexander,Wehus Ingunn Kathrine

Abstract

Abstract PICO is a concept for a NASA probe-scale mission aiming to detect or constrain the tensor to scalar ratio r, a parameter that quantifies the amplitude of inflationary gravity waves. We carry out map-based component separation on simulations with five foreground models and input r values r in = 0 and r in = 0.003. We forecast r determinations using a Gaussian likelihood assuming either no delensing or a residual lensing factor A lens = 27%. By implementing the first full-sky, post component-separation, map-domain delensing, we show that PICO should be able to achieve A lens = 22% – 24%. For four of the five foreground models we find that PICO would be able to set the constraints r < 1.3 × 10-4 to r < 2.7 × 10-4 (95%) if r in = 0, the strongest constraints of any foreseeable instrument. For these models, r = 0.003 is recovered with confidence levels between 18σ and 27σ. We find weaker, and in some cases significantly biased, upper limits when removing few low or high frequency bands. The fifth model gives a 3σ detection when r in = 0 and a 3σ bias with r in = 0.003. However, by correlating r determinations from many small 2.5% sky areas with the mission's 555 GHz data we identify and mitigate the bias. This analysis underscores the importance of large sky coverage. We show that when only low multipoles ℓ ≤ 12 are used, the non-Gaussian shape of the true likelihood gives uncertainties that are on average 30% larger than a Gaussian approximation.

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3