The morphing of decay powered to interaction powered Type II supernova ejecta at nebular times

Author:

Dessart Luc,Gutiérrez Claudia P.,Kuncarayakti Hanindyo,Fox Ori D.,Filippenko Alexei V.

Abstract

There is significant astronomical interest around the intense mass loss that appears to take place in some massive stars immediately before core collapse. However, because it occurs too late, it has a negligible impact on the star’s evolution or the final yields. These properties are then influenced instead by the longer term, quasi-steady, and relatively weak mass loss taking place during H and He burning. Late-time observations of core-collapse supernovae (SNe) interacting with the progenitor wind are one means of constraining this secular mass loss. Here, we present radiative transfer calculations for a Type II SN from a standard red-supergiant (RSG) star explosion. At first, a reference model was computed without interaction power. A second model was then taken to assume a constant interaction power of 1040erg s−1 associated with a typical RSG progenitor wind mass-loss rate of 10−6 Myr−1. We focused on the phase between 350 and 1000 d after explosion. We find that without interaction power, the ejecta are powered through radioactive decay, whose exponential decline produces an ever-fading SN. Instead, with a constant interaction power of 1040 erg s−1, the spectrum morphs from decay powered at 350 d, with narrow lines forming in the inner metal-rich ejecta, to interaction powered at 1000 d, with broad boxy lines forming in the outer H-rich ejecta. Intermediate times are characterized by a hybrid and complex spectrum made of overlapping narrow and broad lines. While interaction boosts primarily the flux in the ultraviolet, which remains largely unobserved today, a knee in the R-band light curve or a U-band boost are clear signatures of interaction at late times. The model predictions offer a favorable comparison with a number of Type II SNe, including SN 2004et or SN 2017eaw at 500–1000 d after explosion.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3