Light curves and spectra for theoretical models of high-velocity red-giant star collisions

Author:

Dessart LucORCID,Ryu TaehoORCID,Amaro Seoane Pau,Taylor Andrew M.

Abstract

High-velocity stellar collisions driven by a supermassive black hole (BH) or BH-driven disruptive collisions in dense, nuclear clusters can rival the energetics of supergiant star explosions following the gravitational collapse of their iron core. Starting from a sample of red-giant star collisions simulated with the hydrodynamics code AREPO, we generated photometric and spectroscopic observables using the nonlocal thermodynamic equilibrium time-dependent radiative transfer code CMFGEN. Collisions from more extended giants or more violent collisions (with higher velocities or smaller impact parameters) yield bolometric luminosities on the order of 1043 erg s−1 at 1 d, evolving on a timescale of a week to a bright plateau at ∼1041 erg s−1 before plunging precipitously after 20–40 d at the end of the optically thick phase. This luminosity falls primarily in the UV in the first few days, thus when it is at its maximum, and shifts to the optical thereafter. Collisions at lower velocities or from less extended stars produce ejecta that are fainter but can remain optically thick for up to 40 d if they have a low expansion rate. This collision debris shows a similar spectral evolution as that observed or modeled for Type II supernovae from blue-supergiant star explosions, differing only in the more rapid transition to the nebular phase. Such BH-driven disruptive collisions should be detectable by high-cadence surveys in the UV such as ULTRASAT.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3