Stripped-envelope stars in different metallicity environments

Author:

Aguilera-Dena David R.ORCID,Langer Norbert,Antoniadis JohnORCID,Pauli DanielORCID,Dessart LucORCID,Vigna-Gómez AlejandroORCID,Gräfener Götz,Yoon Sung-Chul

Abstract

Massive stars that become stripped of their hydrogen envelope through binary interaction or winds can be observed either as Wolf-Rayet stars, if they have optically thick winds, or as transparent-wind stripped-envelope stars. We approximate their evolution through evolutionary models of single helium stars, and compute detailed model grids in the initial mass range 1.5−70 M for metallicities between 0.01 and 0.04, from core helium ignition until core collapse. Throughout their lifetimes some stellar models expose the ash of helium burning. We propose that models that have nitrogen-rich envelopes are candidate WN stars, while models with a carbon-rich surface are candidate WC stars during core helium burning, and WO stars afterwards. We measure the metallicity dependence of the total lifetimes of our models and the duration of their evolutionary phases. We propose an analytic estimate of the wind’s optical depth to distinguish models of Wolf-Rayet stars from transparent-wind stripped-envelope stars, and find that the luminosity ranges at which WN-, WC-, and WO-type stars can exist is a strong function of metallicity. We find that all carbon-rich models produced in our grids have optically thick winds and match the luminosity distribution of observed populations. We construct population models and predict the numbers of transparent-wind stripped-envelope stars and Wolf-Rayet stars, and derive their number ratios at different metallicities. We find that as metallicity increases, the number of transparent-wind stripped-envelope stars decreases and the number of Wolf-Rayet stars increases. At high metallicities WC- and WO-type stars become more common. We apply our population models to nearby galaxies, and find that populations are more sensitive to the transition luminosity between Wolf-Rayet stars and transparent-wind helium stars than to the metallicity-dependent mass loss rates.

Funder

Stavros Nicholaos Foundation and the Hellenic Foundation for Research and Innovation

Deutsches Zentrum für Luft und Raumfahrt

National Research Foundation of Korea

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3