Ultra-long and quite thin coronal loop without significant expansion

Author:

Li DongORCID,Yuan Ding,Goossens Marcel,Van Doorsselaere Tom,Su Wei,Wang Ya,Su Yang,Ning Zongjun

Abstract

Context. Coronal loops are the basic building blocks of the solar corona. They are related to the mass supply and heating of solar plasmas in the corona. However, their fundamental magnetic structures are still not well understood. Most coronal loops do not expand significantly, but the diverging magnetic field would have an expansion factor of about 5−10 over one pressure scale height. Aims. We investigate a unique coronal loop with a roughly constant cross section. The loop is ultra long and quite thin. A coronal loop model with magnetic helicity is presented to explain the small expansion of the loop width. Methods. This coronal loop was predominantly detectable in the 171 Å channel of the Atmospheric Imaging Assembly (AIA). Then, the local magnetic field line was extrapolated within a model of the potential field source-surface. Finally, the differential emission measure analysis made from six AIA bandpasses was applied to obtain the thermal properties of this loop. Results. This coronal loop has a projected length of roughly 130 Mm, a width of about 1.5 ± 0.5 Mm, and a lifetime of about 90 min. It follows an open magnetic field line. The cross section expanded very little (i.e., 1.5−2.0) along the loop length during its whole lifetime. This loop has a nearly constant temperature at about 0.7 ± 0.2 MK, but its density exhibits the typical structure of a stratified atmosphere. Conclusions. We use the theory of a thin twisted flux tube to construct a model for this nonexpanding loop and find that with sufficient twist, a coronal loop can indeed attain equilibrium. However, we cannot rule out other possibilities such as footpoint heating by small-scale reconnection or an elevated scale height by a steady flow along the loop.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3