Kink Waves in Twisted and Expanding Magnetic Tubes

Author:

Ruderman M. S.,Petrukhin N. S.

Abstract

AbstractWe study kink and fluting waves in expanding and twisted magnetic flux tubes. We use the thin-tube and zero-beta plasma approximations. The equilibrium magnetic field is force free with a constant proportionality coefficient between the electrical current and the magnetic field. We derive the equation governing the kink and fluting waves in a tube. Using this equation we study the propagation of kink waves in a particular case of a magnetic tube homogeneous in the axial direction. We show that while there is only one propagating kink wave with the phase speed equal to the kink speed in an untwisted tube, in a twisted tube there are two wave modes, accelerated and decelerated. The phase speed of the accelerated wave exceeds the kink speed, while the phase speed of the decelerated wave is less than the kink speed. We also show that the standing modes are defined by the same eigenvalue problem as that in the case of an untwisted tube. Hence, the frequencies of the standing-wave modes are not affected by the twist. This implies that the seismological results based on the observation of the standing-wave mode frequencies remain valid when the twist is taken into account. The only effect of twist is the variation of the direction of polarisation of the coronal magnetic-loop displacement along the loop. As a result, an apparent node can be detected near the loop apex if only one component of the loop displacement is observed. This can lead to an incorrect conclusion that the observed coronal loop kink oscillation was the first overtone, while in fact it was the fundamental mode.

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3