Rotational spectral modulation of cloudless atmospheres for L/T brown dwarfs and extrasolar giant planets

Author:

Tremblin P.,Phillips M. W.,Emery A.,Baraffe I.,Lew B. W. P.,Apai D.,Biller B. A.,Bonnefoy M.

Abstract

Aims. The rotational spectral modulation (spectro-photometric variability) of brown dwarfs is usually interpreted as a sign indicating the presence of inhomogeneous cloud covers in the atmosphere. This paper is aimed at exploring the role of temperature fluctuations in these spectral modulations. These fluctuations could naturally arise in a convective atmosphere impacted by such diabatic processes as complex chemistry, namely, a mechanism recently proposed to explain the L/T transition: CO/CH4 radiative convection. Methods. After exploring the observed spectral-flux ratios between different objects along the cooling sequence, we used the 1D radiative-convective code ATMO, with ad hoc modifications of the temperature gradient, to model the rotational spectral modulation of 2MASS 1821, 2MASS 0136, and PSO 318.5-22. We also explored the impact of CH4 abundance fluctuations on the spectral modulation of 2MASS 0136. Results. The spectral-flux ratio of different objects along the cooling sequence and the rotational spectral modulation within individual objects at the L/T transition have similar characteristics. This strongly suggests that the main parameter varying along the cooling sequence, namely, temperature, might play a key role in the rotational spectral modulations at the L/T transition. Modeling the spectral bright-to-faint ratio of the modulation of 2MASS 1821, 2MASS 0136, and PSO 318.5-22 shows that most spectral characteristics can be reproduced by temperature variations alone. Furthermore, the approximately anti-correlated variability between different wavelengths can be easily interpreted as a change in the temperature gradient in the atmosphere, which is a consequence we expect from CO/CH4 radiative convection as an explanation of the L/T transition. The deviation from an exact anti-correlation could then be interpreted as a phase shift similar to the hot-spot shift at different bandpasses in the atmospheres of hot Jupiters. Conclusions. Our results suggest that the rotational spectral modulation from cloud opacity and temperature variations are degenerate. If the nearly anti-correlated signal between different wavelengths is, indeed, a strong sign of a change in the temperature gradient, the detection of direct cloud spectral signatures, for instance, the silicate absorption feature at 10 μm, would help to confirm the presence of clouds and their contribution to spectral modulations (which does not exclude temperature variations or other mechanisms that may also be at play). Future studies considering the differences in the spectral modulation of objects with and without the silicate absorption feature may give us some insight into how to distinguish cloud-opacity fluctuations from temperature fluctuations.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3