Chemical evolution during the formation of a protoplanetary disk

Author:

Coutens A.ORCID,Commerçon B.ORCID,Wakelam V.ORCID

Abstract

Context.The chemical composition of protoplanetary disks is expected to impact the composition of the forming planets. Characterizing the diversity of chemical composition in disks and the physicochemical factors that lead to this diversity is consequently of high interest.Aims.The aim of this study is to investigate the chemical evolution from the prestellar phase to the formation of the disk, and to determine the impact that the chemical composition of the cold and dense core has on the final composition of the disk.Methods.We performed 3D nonideal magneto-hydrodynamic (MHD) simulations of a dense core collapse using the adaptive-mesh-refinement RAMSES code. For each particle ending in the young rotationally supported disk, we ran chemical simulations with the three-phase gas-grain chemistry code Nautilus. Two different sets of initial abundances, which are characteristic of cold cores, were considered. The final distributions of the abundances of common species were compared to each other, as well as with the initial abundances of the cold core.Results.We find that the spatial distributions of molecules reflect their sensitivity to the temperature distribution. The main carriers of the chemical elements in the disk are usually the same as the ones in the cold core, except for the S-bearing species, where HS is replaced by H2S3, and the P-bearing species, where atomic P leads to the formation of PO, PN, HCP, and CP. However, the abundances of less abundant species change over time. This is especially the case for “large” complex organic molecules (COMs) such as CH3CHO, CH3NH2, CH3OCH3, and HCOOCH3which see their abundances significantly increase during the collapse. These COMs often present similar abundances in the disk despite significantly different abundances in the cold core. In contrast, the abundances of many radicals decrease with time. A significant number of species still show the same abundances in the cold core and the disk, which indicates efficient formation of these molecules in the cold core. This includes H2O, H2CO, HNCO, and “small” COMs such as CH3OH, CH3CN, and NH2CHO. We computed the MHD resistivities within the disk for the full gas–grain chemical evolution and find results in qualitative agreement with the literature assuming simpler chemical networks.Conclusions.In conclusion, the chemical content of prestellar cores is expected to affect the chemical composition of disks. The impact is more or less important depending on the type of species. Users of stand-alone chemical models of disks should pay special attention to the initial abundances they choose.

Funder

European Research Council

Agence Nationale de la Recherche

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gas phase Elemental abundances in Molecular cloudS (GEMS);Astronomy & Astrophysics;2024-08

2. Chemical inventory of the envelope of the Class I protostar L1551 IRS 5;Astronomy & Astrophysics;2024-07

3. A fast neural emulator for interstellar chemistry;Monthly Notices of the Royal Astronomical Society;2024-06-14

4. Grain growth and its chemical impact in the first hydrostatic core phase;Astronomy & Astrophysics;2024-05

5. Dynamics of dust grains in turbulent molecular clouds;Astronomy & Astrophysics;2023-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3